首页 > 专家库
徐立伟

领域:新一代信息技术产业 学校:电子科技大学职称:教授

计算流体力学 Computational fluid dynamics 散射波正反问题计算方法 Numerical methods for direct and inverse scattering problems...

具体了解该专家信息,请致电:027-87555799 邮箱 haizhi@uipplus.com

教育背景

2009.5 美国特拉华大学应用数学博士 Ph.d Applied Math, University of Delaware, U.S.A 2004.6 重庆大学计算数学硕士 M.S. Computational Math, Chongqing University, China 1999.7 重庆大学计算数学及其应用软件本科毕业 B.S. Computational Math, Chongqing University, Chinࣺᯬ

工作经历

项目课题经历

主持国家自然科学基金重点项目 (91630205), 2017.1-2019.12 PI, NSFC Key Project (91630205), 2017.1-2019.12 主持国家自然科学基金面上项目 (11371385), 2014.1-2017.12 PI, NSFC (11371385), 2014.1-2017.12

论文、成果、著作等

1.Yin, Tao; Hsiao, George C.; Xu, Liwei Boundary integral equation methods for the two-dimensional fluid-solid interaction problem. SIAM J. Numer. Anal. 55 (2017), no. 5, 2361–2393 2. Li, Maojun; Li, Fengyan; Li, Zhen; Xu, Liwei Maximum-principle-satisfying and positivity-preserving high order central discontinuous Galerkin methods for hyperbolic conservation laws. SIAM J. Sci. Comput. 38(2016), no. 6, A3720–A3740. 3. Near-field imaging of obstacles with the factorization method: fluid-solid interaction. Inverse Problems 32 (2016), no. 1, 015003 4. High-order Well-balanced CDG-FE Methods for Shallow Water Waves by the Green-Naghdi Model, Journal of Computational Physics, 257 (2014) 169-192 5. Computation of Maxwell's transmission eigenvalues and its application in inverse medium problems, Inverse Problems, 29 (2013), 104013 6. Positivity-preserving DG and Central DG Methods for ideal MHD Equations, Journal of Computational Physics, 238 (2013), 255-280 7. Arbitrary Order Exactly Divergence-free Central Discontinuous Galerkin Methods for Ideal MHD Equations, Journal of Computational Physics, 231 (2012), 2655-2675 8. A system of boundary integral equations for the transmission problem in acoustics. Appl. Numer. Math. 61 (2011), no. 9, 1017–1029 9. Central Discontinuous Galerkin Methods for Ideal MHD Equations with the Exactly Divergence Field, Journal of Computational Physics, 230 (2011), 4828-4847 10. Numerical Simulation of Three-dimensional Nonlinear Water Waves, Journal of Computational Physics, 228 (2009), 8446-8466

专利、著作版权等

声明:本站专家信息来源于各高校官网。