首页 > 专家库
董琪翔

领域:新一代信息技术产业 学校:扬州大学职称:副教授

非线性泛函分析,抽象空间微分方程,分数阶微分方程...

具体了解该专家信息,请致电:027-87555799 邮箱 haizhi@uipplus.com

教育背景

1989年本科毕业于南京大学;2000年毕业于扬州大学,获理学硕士学位;2008年毕业于扬州大学,获理学博士学位。

工作经历

1989年9月参加工作。2010年任副教授。

项目课题经历

主持过江苏省高校自然科学基金项目一项(已结题),参加过国家自然科学基金项目4项(已结题),参加过江苏省自然科学基金项目两项(已结题),参加过江苏省高校自然科学基金项目一项(已结题)。

目前参加国家自然科学基金项目两项(11271316, 11571300)。

论文、成果、著作等

[1] Qixiang Dong,Existence and viability for fractional differential equations with initial conditions at inner points, J. Nonlinear Sci. Appl. 9 (2016), 2590–2603.

[2] Zhenbin Fan, Qixiang Dong, Gang Li, Approximate Controllability for Semilinear Composite Fractional Relaxation Equations, Fract. Calc. Appl. Anal., Vol. 19, No 1 (2016), pp. 267–284, DOI: 10.1515/fca-2016-0015.

[3] Qixiang Dong, Guangxian Wu, Lanping Zhu, Existence and Continuous Dependence for Fractional Partial Hyperbolic Differential Equations, J. Function Spaces, Volume 2015, Article ID 875170, 7 pages, http://dx.doi.org/10.1155/2015/875170.

[4] Qixiang Dong, Gang Li, Measure of Noncompactness and Semilinear Nonlocal Functional Differential Equations in Banach Spaces, Acta Math. Sinica, English Series, Jan., 2015, Vol. 31, No. 1, pp. 140-150, DOI: 10.1007/s10114-015-3097-z.

[5] Qixiang Dong, Existence and continuous dependence for weighted fractional differential equations with infinite delay, Adv. Difference Equation, 2014(2014) 190, pp.1-13. DOI: 10.1186/1687-1847-2014-190.

[6] Qixiang Dong, Gang Li, Existence of Solutions for Nonlinear Evolution Equations with Infinite Delay, Bull. Korean Math. Soc. 51 (2014), No. 1, pp. 43–54, http://dx.doi.org/10.4134/BKMS.2014.51.1.043.

[7]裴玲燕,赵语维,董琪翔, 一类分数阶微分方程边值问题解的存在性,扬州大学学报(自然科学版),2014,17(1):5-8.

[8] 董琪翔,毋光先,李姣,Banach空间中一类分数阶微分方程边值问题,纯粹数学与应用数学,Vol.29(2013), No.1, pp. 1-10.

[9] 毋光先,董琪翔,李刚,Banach空间中双扰动无穷时滞微分方程,南京大学学报数学半年刊,Vol.27(2010), No.1, pp. 124-133.

[10]Lizhen Chen, Qixiang Dong, Gang Li, Second-order Neutral Functional Differential Equations with Measure of Noncompactness in Banach Spaces, International Journal of Nonlinear Science, Vol.10(2010), No.4, pp. 387-395.

[11] Dong Qi-xiang, Li Gang, Viability for a class of semilinear differential equations of retarded type, Applied Mathematics a Journal of Chinese Universities, 2009, 24(1), 36-44.

[12]Qixiang Dong, Gang Li, Existence of Solutions for Semilinear Differential Equations with Nonlocal Conditions in Banach Spaces, Electronic Journal of Qualitative Theory of Differential Equations, 2009, No. 47, pp. 1-13.

[13]Dong Qixiang, Li Gang, Strong Ergodic Theorem for Asymptotically Almost Non- expansive Curves in Hilbert Spaces,Acta Analysis Functionalis Applicata,Vol. 10(2008), No. 2, pp. 100-108.

[14]Qixiang Dong,Zhenbin Fan,Gang Li,Existence of solutions to nonlocal neutral functional differential and integrodifferential equations,International Journal of Nonlinear Science, Vol.5 (2008) No.2, pp.140-151

[15]Qixiang Dong,Gang Li,Jin Zhang,Quasilinear Nonlocal intergrodifferential equations in Banach spaces, Electronic Journal of Differential Equations, Vol. 2008(2008), No. 19, pp. 1–8.

[16]Qixiang Dong,Gang Li,Nonlocal Cauchy Problem for Functional Integro-differential Equations in Banach Spaces, Nonlinear Functional Analysis and Applications, Vol. 13, No. 4 (2008), pp. 705-717

[17]Qixiang Dong, Gang Li, Viability for Semilinear Differential Equations of Retarded Type, Bull. Korean Math. Soc. 44(2007), No.4, pp.731-742.

[18]Zhenbin Fan, Qixiang Dong, Gang Li,Semilinear Differential Equations with Nonlocal Conditions in Banach Spaces, International Journal of Nonlinear Science, Vol.2(2006), No.3, pp. 131-139.

专利、著作版权等

声明:本站专家信息来源于各高校官网。