领域:高端装备制造产业 学校:复旦大学职称:特聘教授
早期从事分岔和混沌理论与应用、时滞系统动力学研究,近期从事仿生结构与机器人、下假肢系统动力学解析与优化、并联机械臂末端执行器智能化高精度控制等研究。重点关注提取生物体典型特征,对机器人结构-驱动-协同进行一体化解析和数据驱动建模,利用分岔理论对系统动力学行为进行分类,实现对刚-柔-软耦合结构、动力和控制等关键参数辨识,为控制的智能性、结构的刚度调控和柔顺性以及协同性优化提供设计方法,提供结构和控制器设计理论依据。
...
具体了解该专家信息,请致电:027-87555799 邮箱 haizhi@uipplus.com
一、学术会议邀请报告
[1]在中国首届机器人学术年会(2018,武汉)做题为“蚯蚓型移动机器人的驱动与环境共融”大会主题邀请报告
[2]在大数据驱动下力学的机遇与挑战研讨会(2018,深圳)做题为“数据驱动系统参数辨识和系统高精度控制”会议主题邀请报告
[3]在第十六届现代数学和力学学术会议(2018,昆明)做题为“无腿移动机器人的仿生结构和蠕动驱动动力学及其优化”的大会主题邀请报告
[4]第二届中国空天安全会议(2017,大连)做题为“受控系统的时滞和结构参数辨识新方法”的大会邀请报告
[5]在“ICTAM’2016(Montreal, Canada)”的“SM16-Vibration and Control of Structures”做题为“Optimal parameters of time-delayed control Quasi-Zero-Stiffness isolation system”的邀请报告
[6]在第十届全国动力学与控制学术会议(2016,成都)做题为“蚯蚓型移动机器人的驱动、环境共融动力学分析和实验”大会邀请报告
[7]在IUTAM Symposium on Nonlinear and Delayed Dynamics of Mechatronic Systems(2016 ,Nanjing)做题为“A noise correction embedded identification approach for delays and parameters in delayed nonlinear systems”邀请报告。
[8]在第六届全国动力学与控制青年学者学术研讨会(2012,上海)做题为“向蠕虫爬行学习:多单元振动驱动耦合仿生系统的建模、分析与优化”的大会邀请报告
二、教材和著作
[1]徐鉴,王琳. 输液管动力学分析和控制,科学出版社, 北京,2015.(39.4万字)
[2]武清玺,徐鉴. 理论力学(第2版),十二五本科规划教材,高等教育出版社,北京,2010.
[3]武清玺,徐鉴. 理论力学(第3版),十二五本科规划教材,高等教育出版社,北京,2016.
[4]张伟,杨绍普,徐 鉴,叶 敏,吴志强 非线性系统的周期振动和分岔, 科学出版社, 2002.
[5]徐鉴, Wang W. Y., Chapter 6: Switching Control of Uncertain Dynamical Systems with Time Delay, In: Advances in Analysis and Control of Time-Delayed Dynamical Systems (Sun, J.-Q. and Ding, Q. (Ed.)), World Scientific Publishing and Higher Education Press of China, Beijing, 2013: 163-192.
[6]Zhang X. X., 徐鉴, Chapter 22: Time-Delay Identification for Linear Systems: A Practical Method Using the Frequency Response Function, In: Advances in Delays and Dynamics (Vol. 7: Time Delay Systems) (Insperger, T., Ersal, T., and Orosz, G. (Ed.)), Springer International Publishing AG, Switzerland, 2017: 333-348
三、代表性研究论文
[1]Sun X. T., Wang F., 徐鉴*. Dynamics and realization of a feedback-controlled nonlinear isolator with variable time delay, ASME Trans. Journal of Vibration and Acoustics, 2019, 141(2): 021005(13 pages)
[2]Zhan X., 徐鉴*, Fang H. B. A vibration-driven planar locomotion robot— Shell, Robotica, 2018, 36(9): 1402-1420.
[3]Yan Y., 徐鉴*. Stability and dynamics of parallel plunge grinding, International Journal of Advanced Manufacturing Technology, 2018, 99(1), 881-895.
[4]Zhang X. X., 徐鉴*. An extended synchronization method to identify slowly time-varying parameters in nonlinear systems. IEEE Transactions on Signal Processing, 2018, 66(2): 438-488.
[5]Chen Q., 徐鉴*. Locomotion of two vibration-driven modules connected by a mechanical position limiter. International Journal of Mechanical Sciences, 2018, 137:252-262.
[6]Liu Z. L, 徐鉴*. A Galerkin discretisation-based identification for parameters in nonlinear mechanical systems[J]. International Journal of Systems Science, 2018, 49(5): 908-919.
[7]Jiang Z. W., 徐鉴*. The Optimal locomotion of a self-propelled worm actuated by two square waves. Micromachines, 2017, 8(12): 364(17 Pages).
[8]Zhan X., 徐鉴*,Fang H B. Planar locomotion of a vibration-driven system with two internal masses, Applied Mathematical Modelling, 2016, 40: 871-885.
[9]徐鉴*, Jiang S. Y. Delay-induced Bogdanov-Takens bifurcation and dynamical classifications in a slow-fast flexible joint system. International Journal of Bifurcation and Chaos, 2015, 25(9): 1550121 (15 pages)
[10]徐鉴*,Chen Y. L. An improved time-delay saturation controller for suppression of nonlinear beam vibration, Nonlinear Dynamics, 2015, 82(4): 1691-1707.
[11]Fang H. B., Li, S. Y., Wang K. W., 徐鉴*. Phase coordination and phase-velocity relationship in metameric robot locomotion, Bioinspiration & Biomimetics , 2015, 10(6): 066006.
[12]Fang H. B. 徐鉴*. Stick-slip effect in a vibration-driven system with dry friction: sliding bifurcations and optimization. ASME Trans. Journal of Applied Mechanics, 2014, 81: 051001-10.
[13]Zhang S., 徐鉴*. Qusiperiodic motion induced by heterogeneous delays in a simplified internet congestion control model, Nonlinear Analysis: Real World Applications, 2013, 14(1): 661-670
[14]Song Z. G., 徐鉴*. Stability switches and multistability coexistence in a delay-coupled neural oscillators system, Journal of Theoretical Biology, 2012, 313(1): 98-114.
[15]Fang H. B.,徐鉴*. Dynamics of a mobile System with an internal acceleration-controlled mass in a resistive media,Journal of Sound and Vibration, 2011, 330(16): 4002-4018.
[16]Ge J. H, 徐鉴*, Computation of synchronized periodic solution in a BAM network with two delays. IEEE Transactions on neural networks, 2010, 21(3): 439-450.
[17]徐鉴, Chung K. W. Dynamics for a class of nonlinear systems with time delay, Chaos, Solitons & Fractals 40(1) 2009: 28-49.
[18]徐鉴, Pei L. J., The Nonresonant Double Hopf Bifurcation in Delayed Neural Network, International Journal of Computer Mathematics 85(6), 2008: 925-935.
[19]徐鉴,Chung K. W., Chan C. L. An Efficient Method for Studying Weak Resonant Double Hopf Bifurcation in Nonlinear Systems with Delayed Feedback, SIAM Journal on Applied Dynamical Systems 6(1), 2007: 29-60.
[20]徐鉴, Chung K. W., Effects of time delayed position feedback on a van der Pol-Duffing oscillator, Physica D 180(1-2), 2003: 17-39.