教育背景
1998.9-2002.6 哈尔滨工业大学自动化专业学士学位
2002.9-2005.3 东北大学信息科学与工程学院电力电子与电力传动硕士学位
2006.3-2009.1东北大学信息科学与工程学院控制理论与控制工程专业博士学位
工作经历
2005.3-2009.1 东北大学信息科学与工程学院助教
2009.1-2011.12 东北大学信息科学与工程学院讲师
2012.1-2017.12 东北大学信息科学与工程学院副教授
2018.1-至今东北大学信息科学与工程学院教授博士生导师
项目课题经历
项目
1.国家自然科学基金面上基金:基于异构场的深海管道进化缺陷故障诊断方法研究,61973071,2020.1-2023.12.
2.国家重点研发计划:深海油气管道内外检测与故障诊断装备开发与示范应用, 2017YFF0108804,2017YFF0108802-1,2017.7-2021.6.
3.国家重大科研仪器研制项目子课题:基于电磁全息协同的海洋在役油气管道内检测仪器研制-电磁全息检测原理及缺陷智能故障诊断,61627809-2,2017.1-2021.12.
4.企业重大课题:深海管道ᠦ
论文、成果、著作等
期刊论文
1.Mingrui Fu, Jinhai Liu*, Huaguang Zhang, Senxiang Lu. Multi-sensor Fusion for MFL Defect Characterization Under Information Incompletion. IEEE Transactions on Industrial Electronics, DOI:10.1109/TIE.2020.2984444
2.Mingrui Fu, Jinhai Liu*, Dong Zang, Senxiang Lu. Anomaly Detection of Complex MFL Measurements Using Low-rank Recovery in Pipeline Transportation Inspection.IEEE Transactions on Instrumentation & Measurement, DOI:10.1109/TIM.2020.2974543
3.Fuming Qu, Jinhai Liu*, Hongfei Zhu, Bowen Zhou. Wind Turbine Fault Detection Based on Expanded Linguistic Terms and Rules Using Non-singleton Fuzzy Logic. Applied Energy. DOI:https://doi.org/10.1016/j.apenergy.2019.114469
4.Fuming Qu, Jinhai Liu*, et al. Wind Turbine Condition Monitoring Based on Assembled Multidimensional Membership Functions Using Fuzzy Inference System, IEEE Transactions on Industrial Informatics. 16(6): 4028-4037, 2020.
5.Jinhai Liu*, Fuming Qu, et.al. A Small-sample Wind Turbine Fault Detection Method with Synthetic Fault Data Using Generative Adversarial Nets. IEEE Transactions on Industrial Informatics. 15(7) : 3877-3888 ,2019
6.Jinhai Liu*, Dong Zang, et. al. A Leak Detection Method for Oil Pipeline Based on Markov Feature and Two-stage Decision Scheme. Measurement. 138 : 433-445, 2019.
7.Jinhai Liu*, Mingrui Fu, Feilong Liu, et.al. Window Feature Based 2-stage Defect Identication Using Magnetic Flux Leakage (MFL) Measurements. IEEE Transactions on Instrumentation & Measurement. 2018,67(1):12-23.
8.Jinhai Liu*, Yanjuan Ma, Huaguang Zhang, et.al. A modified fuzzy min–max neural network for data clustering and its application on pipeline internal inspection data. Neurocomputing 238(2017)56-66.
9.Liu Jinhai*, Ma Yanjuan, Wu Zhengning, Wang Gang. Real-time pressure based diagnosis method for oil pipeline leakage. Journal of Shanghai Jiao Tong University (Science) 2017,22(2):233-239.
10.Jinhai Liu*, Hanguang Su, Yanjuan Ma, et.al. Chaos characteristics and least squares support vector machines based online pipeline small leakages detection. Chaos, Solitons and Fractals, 91 (2016) 656–669.
专利、著作版权等
专利
1.一种管道漏磁内检测器数据的自适应滤波方法,ZL201610844081.2,2019
2.基于KNN-SVR的海底管道漏磁数据缺失插补方法,专利号:CN107842713B,2019.
3.一种管道缺陷漏磁信号的特征提取方法,专利号:CN106870957B,2019.
4.一种海底管道内检测器的实时跟踪与定位系统及方法,CN107166174B,2019
5.一种基于无源RFID的实验室设备动态管理系统,CN103996097B,2017
6.一种基于组合滤波和动态阈值的管道压力异ᠦ
声明:本站专家信息来源于各高校官网。