首页 > 专家库
张鑫

领域:新一代信息技术产业 学校:东北大学职称:教授

引力与宇宙学...

具体了解该专家信息,请致电:027-87555799 邮箱 haizhi@uipplus.com

教育背景

2006年6月,中国科学院高能物理研究所,博士学位

工作经历

2006年6月-2008年5月,中国科学院理论物理研究所,博士后 2008年5月-现在,东北大学,教授 2011年1月-现在,北京大学高能物理中心,李政道青年学者

项目课题经历

国家自然科学基金项目: 国家自然科学基金-优秀青年基金项目,“暗能量与修改引力”,2016-2018; 国家自然科学基金-面上项目,“相互作用暗能量若干问题的研究”,2012-2015; 国家自然科学基金-面上项目,“暗能量和极早期宇宙的理论研究”,2010-2012; 国家自然科学基金-青年基金项目,“暴胀宇宙学与暗能量相关问题的研究”,2008-2010。 人才计划项目: 国家“万人计划”(高层次人才特殊支持计划)青年拔尖人才支持计划项目,2016-2018; 教育部新世纪优秀人ᠦ୔

论文、成果、著作等

学术论文 [114]Lu Feng, Yun-He Li, Fei Yu, Jing-Fei Zhang, Xin Zhang*. Exploring interacting holographic dark energy in a perturbed universe with parameterized post-Friedmann approach. e-Print: arXiv:1807.03022 [astro-ph.CO] | PDF [113] Jia-Jia Geng, Rui-Yun Guo, Anzhong Wang, Jing-Fei Zhang, Xin Zhang*. Prospect for cosmological parameter estimation using future Hubble parameter measurements. e-Print: arXiv:1806.10735 [astro-ph.CO] | PDF [112] Xuan-Neng Zhang, Ling-Feng Wang, Jing-Fei Zhang, Xin Zhang*. Improving cosmological parameter estimation with the future gravitational-wave standard siren observation from the Einstein Telescope. e-Print: arXiv:1804.08379 [astro-ph.CO] | PDF [111] Rui-Yun Guo, Jing-Fei Zhang, Xin Zhang*. Exploring neutrino mass and mass hierarchy in the scenario of vacuum energy interacting with cold dark matter. e-Print: arXiv:1803.06910 [astro-ph.CO] | PDF [110] Ling-Feng Wang, Xuan-Neng Zhang, Jing-Fei Zhang, Xin Zhang*. Impacts of gravitational-wave standard siren observation of the Einstein Telescope on weighing neutrinos in cosmology. Physics Letters B 782 (2018) 87-93. e-Print: arXiv:1802.04720 [astro-ph.CO] | PDF [109] Rui-Yun Guo, Lei Zhang, Jing-Fei Zhang, Xin Zhang*. Constraints on brane inflation after Planck 2015: Impacts of the latest local measurement of the Hubble constant. e-Print: arXiv:1801.02187 [astro-ph.CO] | PDF [108] Lu Feng, Jing-Fei Zhang, Xin Zhang*. Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter. e-Print: arXiv:1712.03148 [astro-ph.CO] | PDF [107] Jue Zhang, Xin Zhang*. Gravitational clustering of cosmic relic neutrinos in the Milky Way. Nature Communications 9 (2018) 1833. [106] Hai-Li Li, Jing-Fei Zhang, Lu Feng, Xin Zhang*. Reexploration of interacting holographic dark energy model: cases of interaction term excluding the Hubble parameter. European Physical Journal C 77 (2017) 907. [105] Juan-Juan Guo, Jing-Fei Zhang, Yun-He Li, Dong-Ze He, Xin Zhang*. Probing the sign-changeable interaction between dark energy and dark matter with current observations. Science China-Physics, Mechanics & Astronomy 61 (2018) 030011. [104] Ming-Ming Zhao, Jing-Fei Zhang, Xin Zhang*. Measuring growth index in a universe with massive neutrinos: A revisit of the general relativity test with the latest observations. Physics Letters B 779 (2018) 473-478. [103] Shulei Ni, Hong Li, Taotao Qiu, Wei Zheng, Xin Zhang. Probing signatures of bounce inflation with current observations. (2017) submitted. [102] Lu Feng, Jing-Fei Zhang, Xin Zhang*. Searching for sterile neutrinos in dynamical dark energy cosmologies. Science China-Physics, Mechanics & Astronomy 61 (2018) 050411. [101] Rui-Yun Guo, Xin Zhang*. Constraints on inflation revisited: an analysis including the latest local measurement of the Hubble constant. European Physical Journal C 77 (2017) 882. [100] Ming-Ming Zhao, Dong-Ze He, Jing-Fei Zhang, Xin Zhang*. Search for sterile neutrinos in holographic dark energy cosmology: Reconciling Planck observation with the local measurement of the Hubble constant. Physical Review D 96 (2017) 043520. [99] Lu Feng, Jing-Fei Zhang, Xin Zhang*. A search for sterile neutrinos with the latest cosmological observations. European Physical Journal C 77 (2017) 418. [98] Jing-Lei Cui, Hai-Li Li, Xin Zhang*. No evidence for the evolution of mass density power-law index γ from strong gravitational lensing observation. Science China Physics, Mechanics & Astronomy 60 (2017) 080411. [97] Rui-Yun Guo, Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Weighing neutrinos in the scenario of vacuum energy interacting with cold dark matter: application of the parameterized post-Friedmann approach. Journal of Cosmology and Astroparticle Physics 1705 (2017) 040. [96] Ming-Ming Zhao, Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Constraining neutrino mass and extra relativistic degrees of freedom in dynamical dark energy models using Planck 2015 data in combination with low-redshift cosmological probes: basic extensions to ΛCDM cosmology. Monthly Notices of the Royal Astronomical Society 469 (2017) 1713. [95] Xin Zhang*. Weighing neutrinos in dynamical dark energy models. Science China Physics, Mechanics & Astronomy 60 (2017) 060431. [94] Xin Zhang*. Impact of the latest measurement of Hubble constant on constraining inflation models. Science China Physics, Mechanics & Astronomy 60 (2017) 060421. [93] Xin Zhang*. Probing the interaction between dark energy and dark matter with the parametrized post-Friedmann approach. Science China Physics, Mechanics & Astronomy 60 (2017) 050431. [92] Dong-Ze He, Jing-Fei Zhang, Xin Zhang. Redshift drift constraints on holographic dark energy. Science China Physics, Mechanics & Astronomy 60 (2017) 039511. [91] Sai Wang, Yi-Fan Wang, Dong-Mei Xia, Xin Zhang. Impacts of dark energy on weighing neutrinos: Mass hierarchies considered. Physical Review D 94 (2016) 083519. [90] Yue-Yao Xu, Xin Zhang*. Comparison of dark energy models after Planck 2015. European Physical Journal C 76 (2016) 588. [89] Lu Feng, Xin Zhang*. Revisit of the interacting holographic dark energy model after Planck 2015. Journal of Cosmology and Astroparticle Physics 1608 (2016) 072. [88] Xin Zhang*. Impacts of dark energy on weighing neutrinos after Planck 2015. Physical Review D 93 (2016) 083011. [87] Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Testing models of vacuum energy interacting with cold dark matter. Physical Review D 93 (2016) 023002. [86] Rui-Yun Guo, Xin Zhang*. Constraining dark energy with Hubble parameter measurements: an analysis including future redshift-drift observations. European Physical Journal C 76 (2016) 163. [85] Shuang Wang, Jia-Jia Geng, Yi-Liang Hu, Xin Zhang*. Revisit of constraints on holographic dark energy: SNLS3 dataset with the effects of time-varying β and different light-curve fitters. Science China Physics, Mechanics & Astronomy 58 (2015) 019801. [84] Jia-Jia Geng, Rui-Yun Guo, Dong-Ze He, Jing-Fei Zhang, Xin Zhang*. Redshift drift constraints on f(T) gravity. Frontiers of Physics 10 (2015) 109501. [83] Jing-Lei Cui, Yue-Yao Xu, Jing-Fei Zhang, Xin Zhang*. Strong gravitational lensing constraints on holographic dark energy. Science China Physics, Mechanics & Astronomy 58 (2015) 110402. [82] Fei Yu, Jing-Lei Cui, Jing-Fei Zhang, Xin Zhang*. Statefinder hierarchy exploration of the extended Ricci dark energy. European Physical Journal C 75 (2015) 274. [81]Jing-Lei Cui, Lu Yin, Ling-Feng Wang, Yun-He Li, Xin Zhang*. A closer look at interacting dark energy with statefinder hierarchy and growth rate of structure,Journal of Cosmology and Astroparticle Physics 09 (2015) 024. [80] Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Probing f(R) cosmology with sterile neutrinos via measurements of scale-dependent growth rate of structure. Physics Letters B 744 (2015) 213-217. [79] Jia-Jia Geng, Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Redshift drift exploration for interacting dark energy.European Physical Journal C 75 (2015) 356. [78] Jing-Fei Zhang, Ming-Ming Zhao, Yun-He Li, Xin Zhang*. Neutrinos in the holographic dark energy model: constraints from latest measurements of expansion history and growth of structure. Journal of Cosmology and Astroparticle Physics 04 (2015) 038 . [77] Jing-Fei Zhang, Yun-He Li, Xin Zhang*. Sterile neutrinos help reconcile the observational results of primordial gravitational waves from Planck and BICEP2. Physics Letters B 740 (2015) 359-363. [76] Wei-Jiang Gong, Ying Zhao, Zhen Gao, Guangyu Yi, Xin Zhang. Odd-Even Effect of the Persistent Current in a Quantum Dot Ring with Embedded Majorana Bound States. Journal of the Physical Society of Japan 84 (2015) 024707. [75] Jia-Jia Geng, Jing-Fei Zhang, Xin Zhang*. Parameter estimation with Sandage-Loeb test. Journal of Cosmology and Astroparticle Physics 12 (2014) 018. [74] Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: Application of the parametrized post-Friedmann approach. Physical Review D 90 (2014) 123007. [73] Jing-Fei Zhang, Ming-Ming Zhao, Jing-Lei Cui, Xin Zhang*. Revisiting the holographic dark energy in a non-flat universe: alternative model and cosmological parameter constraints. European Physical Journal C 74 (2014) 3178. [72] Jing-Fei Zhang, Jia-Jia Geng, Xin Zhang*. Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints. Journal of Cosmology and Astroparticle Physics 10 (2014) 044. [71] Shuang Wang, Yong-Zhen Wang, Jia-Jia Geng, Xin Zhang*. Effects of time-varying β in SNLS3 on constraining interacting dark energy models. European Physical Journal C 74 (2014) 3148. [70] Jing-Fei Zhang, Jing-Lei Cui, Xin Zhang*. Diagnosing holographic dark energy models with statefinder hierarchy. European Physical Journal C 74 (2014) 3100. [69] Jing-Fei Zhang, Yun-He Li, Xin Zhang*. Measuring growth index in a universe with sterile neutrinos. Physics Letters B 739 (2014) 102-105. [68] Shuang Wang, Yong-Zhen Wang, Xin Zhang*. Effects of a time-varying color-luminosity parameter β on the cosmological constraints of modified gravity models. Communications in Theoretical Physics 62 (2014) 927-936. [67] Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Tilt of primordial gravitational wave spectrum in a universe with sterile neutrinos. Science China Physics, Mechanics & Astronomy 57 (2014) 1455-1459. [66] Jia-Jia Geng, Jing-Fei Zhang, Xin Zhang*. Quantifying the impact of future Sandage-Loeb test data on dark energy constraints. Journal of Cosmology and Astroparticle Physics 1407 (2014) 006. [65] Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Parametrized post-Friedmann framework for interacting dark energy. Physical Review D 90 (2014) 063005. [64] Jing-Fei Zhang, Yun-He Li, Xin Zhang*. Cosmological constraints on neutrinos after BICEP2. European Physical Journal C 74 (2014) 2954. [63] Yun-He Li, Xin Zhang*. Large-scale stable interacting dark energy model: Cosmological perturbations and observational constraints. Physical Review D 89 (2014) 083009. [62] Shuang Wang, Yun-He Li, Xin Zhang*. Exploring the evolution of color-luminosity parameter β and its effects on parameter estimation. Physical Review D 89 (2014) 063524. [61] Chao-Qiang Geng, Lu-Hsing Tsai, Xin Zhang. Dark radiation from a unified dark fluid model. Progress of Theoretical and Experimental Physics 2014 (2014) 6, 063E01. [60] Jing-Fei Zhang, Li-Ang Zhao, Xin Zhang*. Revisiting the interacting model of new agegraphic dark energy. Science China Physics, Mechanics & Astronomy 57 (2014) 387-392. [59] Miao Li, Xiao-Dong Li, Yin-Zhe Ma, Xin Zhang, Zhenhui Zhang. Planck constraints on holographic dark energy. Journal of Cosmology and Astroparticle Physics 1309 (2013) 021. [58] Nan Li, Xin Zhang*. Reexamination of inflation in noncommutative space-time after Planck results. Physical Review D 88 (2013) 023508. [57] Yin-Zhe Ma, Qing-Guo Huang, Xin Zhang. Confronting brane inflation with Planck and pre-Planck data. Physical Review D 87 (2013) 103516. [56] Yun-He Li, Shuang Wang, Xiao-Dong Li, Xin Zhang*. Holographic dark energy in a universe with spatial curvature and massive neutrinos: a full Markov Chain Monte Carlo exploration. Journal of Cosmology and Astroparticle Physics 1302 (2013) 033. [55] Jing-Fei Zhang, Yun-He Li, Xin Zhang*. A global fit study on the new agegraphic dark energy model. European Physical Journal C 73 (2013) 2280. [54] Yun-He Li, Jing-Fei Zhang, Xin Zhang*. New initial condition of the new agegraphic dark energy model. Chinese Physics B 22(2013) 039501. [53] Jing-Fei Zhang, Yang-Yang Li, Ying Liu, Sheng Zou, Xin Zhang*. Holographic Λ(t)CDM model in a non-flat universe. European Physical Journal C 72 (2012) 2077. [52] Zhen-Hui Zhang, Song Li, Xiao-Dong Li, Xin Zhang, Miao Li. Revisit of the interaction between holographic dark energy and dark matter. Journal of Cosmology and Astroparticle Physics 1206 (2012) 009. [51] Xiao-Dong Li, Shuang Wang, Qing-Guo Huang, Xin Zhang*, Miao Li. Dark energy and fate of the universe. Science China Physics, Mechanics & Astronomy 55 (2012) 1330-1334. [50] Hong Li, Xin Zhang*. Constraining dynamical dark energy with a divergence-free parametrization in the presence of spatial curvature and massive neutrinos. Physics Letters B 713 (2012) 160-164. [49] Tian-Fu Fu, Jing-Fei Zhang, Jin-Qian Chen, Xin Zhang*. Holographic Ricci dark energy: interacting model and cosmological constraints. European Physical Journal C 72 (2012) 1932. [48] Hong Li, Xin Zhang*. Probing the dynamics of dark energy with divergence-free parametrizations: A global fit study. Physics Letters B 703 (2011) 119-123. [47] Yun-He Li, Xin Zhang*. Running coupling: does the coupling between dark energy and dark matter change sign during the cosmological evolution? European Physical Journal C 71 (2011) 1700. [46] Jing-Zhe Ma, Xin Zhang*. Probing the dynamics of dark energy with novel parametrizations. Physics Letters B 699 (2011) 233-238. [45] Yun-He Li, Jing-Zhe Ma, Jing-Lei Cui, Zhuo Wang, Xin Zhang*. Interacting model of new agegraphic dark energy: observational constraints and age problem. Science China - Physics, Mechanics & Astronomy 54 (2011) 1367-1377. [44] Miao Li, Xiao-Dong Li, Xin Zhang*. Comparison of dark energy models: A perspective from the latest observational data. Chinese Science Bulletin 55 (2010) 3741. [43] Xin Zhang*. Heal the world: Avoiding the cosmic doomsday in the holographic dark energy model. Physics Letters B 683 (2010) 81-87. [42] Jingfei Zhang, Li Zhang, Xin Zhang*. Sandage-Loeb test for the new agegraphic and Ricci dark energy models. Physics Letters B 691 (2010) 11-17. [41] Jinglei Cui, Xin Zhang*. Cosmic age problem revisited in the holographic dark energy model. Physics Letters B 690 (2010) 233-238. [40] Xiang-Lai Liu, Jingfei Zhang, Xin Zhang*. Theoretical limits on agegraphic quintessence from weak gravity conjecture. Physics Letters B 689 (2010) 139-144. [39] Miao Li, Xiao-Dong Li, Xin Zhang*. Comparison of dark energy models: A perspective from the latest observational data. Science China - Physics, Mechanics & Astronomy 53 (2010) 1631-1645. [38] Li Zhang, Jinglei Cui, Jingfei Zhang, Xin Zhang*. Interacting model of new agegraphic dark energy: Cosmological evolution and statefinder diagnostic. International Journal of Modern Physics D 19 (2010) 21-35. [37] Jinglei Cui, Li Zhang, Jingfei Zhang, Xin Zhang*. New agegraphic dark energy as a rolling tachyon. Chinese Physics B 19 (2010) 019802. [36] Miao Li, Xiao-Dong Li, Shuang Wang, Yi Wang, Xin Zhang*. Probing interaction and spatial curvature in the holographic dark energy model. Journal of Cosmology and Astroparticle Physics 0912 (2009) 014 [35] Wan-Lei Guo, Xin Zhang. Constraints on dark matter annihilation cross section in the brane-world and quintessence scenarios. Physical Review D 79 (2009) 115023. [34] Miao Li, Xiao-Dong Li, Shuang Wang, Xin Zhang. Holographic dark energy models: a comparison from the latest observational data. Journal of Cosmology and Astroparticle Physics 0906 (2009) 036. [33] Xin Zhang*. Holographic Ricci dark energy: Current observational constraints, quintom feature, and the reconstruction of scalar-field dark energy. Physical Review D 79 (2009) 103509. [32] Yin-Zhe Ma, Xin Zhang*. Brane inflation revisited after WMAP five-year results. Journal of Cosmology and Astroparticle Physics 0903 (2009) 006. [31] Xin Zhang*. Can the universe fragment into many independent causal patches at turnaround in cyclic cosmology? European Physical Journal C 59 (2009) 755-759. [30] Xin Zhang*. Can black holes be torn up by phantom dark energy in cyclic cosmology? European Physical Journal C 60 (2009) 661-667. [29] Xin Zhang, Jingfei Zhang, Jinglei Cui, Li Zhang. Chaplygin inflation in loop quantum cosmology. Modern Physics Letters A 24 (2009) 1763-1773. [28] Chao-Jun Feng, Xin Zhang*. Holographic Ricci dark energy in Randall-Sundrumbraneworld: Avoidance of big rip and steady state future. Physics Letters B 680 (2009) 399-403. [27] Xiang-Lai Liu, Xin Zhang*. New agegraphic dark energy in Brans-Dicke theory. Communications in Theoretical Physics 52 (2009) 761-768. [26] Yin-Zhe Ma, Xin Zhang*. Possible theoretical limits on holographic quintessence from weak gravity conjecture. Physics Letters B 661 (2008) 239-245. [25] Jingfei Zhang, Xin Zhang*, Hongya Liu. Statefinder diagnosis for the interacting model of holographic dark energy. Physics Letters B 659 (2008) 26-33. [24] Jingfei Zhang, Xin Zhang*, Hongya Liu. Agegraphic dark energy as a quintessence. European Physical Journal C 54 (2008) 253-258. [23] Jingfei Zhang, Xin Zhang*, Hongya Liu. Reconstructing generalized ghost condensate model with dynamical dark energy parametrizations and observational datasets. Modern Physics Letters A 23 (2008) 139-152. [22] Jingfei Zhang, Xin Zhang*, Hongya Liu. Holographic dark energy in a cyclic universe. European Physical Journal C 52 (2007) 693-699. [21] Jingfei Zhang, Xin Zhang, Hongya Liu. Holographic tachyon model. Physics Letters B 651 (2007) 84-88. [20] Xin Zhang*, Yi Ling. Inflationary universe in loop quantum cosmology. Journal of Cosmology and Astroparticle Physics 0708 (2007) 012. [19] Xin Zhang*, Feng-Quan Wu. Constraints on holographic dark energy from latest supernovae, galaxy clustering, and cosmic microwave background anisotropy observations. Physical Review D 76 (2007) 023502. [18] Xin Zhang*. Reconstructing holographic quintessence. Physics Letters B 648 (2007) 1-7. [17] M. R. Setare, Jingfei Zhang, Xin Zhang*. Statefinder diagnosis in a non-flat universe and the holographic model of dark energy. Journal of Cosmology and Astroparticle Physics 0703 (2007) 007. [16] Xin Zhang*. Dynamical vacuum energy, holographic quintom, and the reconstruction of scalar-field dark energy. Physical Review D 74 (2006) 103505. [15] Xin Zhang*. A note on noncommutative brane inflation. Journal of Cosmology and Astroparticle Physics 0612 (2006) 002. [14] Xin Zhang*, Feng-Quan Wu. Noncommutative chaotic inflation and WMAP three year results. Physics Letters B 638 (2006) 396-400. [13] Xin Zhang*, Feng-Quan Wu, Jingfei Zhang. New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter. Journal of Cosmology and Astroparticle Physics 0601 (2006) 003. [12] Zhe Chang, Feng-Quan Wu, Xin Zhang*. Constraints on holographic dark energy from X-ray gas mass fraction of galaxy clusters. Physics Letters B 633 (2006) 14-18. [11] Xin Zhang*, Feng-Quan Wu. Constraints on holographic dark energy from type Ia supernova observations. Physical Review D 72 (2005) 043524. [10] Xin Zhang*. Statefinder diagnostic for coupled quintessence. Physics Letters B 611 (2005) 1-7. [9] Xin Zhang*. Coupled quintessence in a power-law case and the cosmic coincidence problem. Modern Physics Letters A 20 (2005) 2575. [8] Xin Zhang*. Statefinder diagnostic for holographic dark energy model. International Journal of Modern Physics D 14 (2005) 1597-1606. [7] Xin Zhang*. An interacting two-fluid scenario for quintom dark energy. Communications in Theoretical Physics 44 (2005) 762-768. [6] Xin Zhang*. Statefinder parameters for coupled quintessence scenario in a power law case. Communications in Theoretical Physics 44 (2005) 573-576. [5] Xin Zhang*. Black hole evaporation based upon a q-deformation description. International Journal of Modern Physics A 20 (2005) 6039-6049. [4] Xin Zhang*, Feng Pan. Transitional description of diatomic molecules in U(4) vibron model. Communications in Theoretical Physics 41 (2004) 29-36. [3] Xin Zhang*, Feng Pan. Exact solutions of sl-boson system in U(2l+1)-O(2l+2) transitional region. Chinese Physics C 26 (2002) 1228-1237. [2] Feng Pan, Xin Zhang, J. P. Draayer. Possible deviations from the O(4) limit of the vibron model in diatomic molecules. Physics Letters A 316 (2003) 84-90. [1] Feng Pan, Xin Zhang, J. P. Draayer. Algebraic solutions of an sl-boson system in the U(2l+1)<-->O(2l+2) transitional region. Journal of Physics A 35 (2002) 7173-7185.

专利、著作版权等

声明:本站专家信息来源于各高校官网。