教育背景
2006年6月,中国科学院高能物理研究所,博士学位
工作经历
2006年6月-2008年5月,中国科学院理论物理研究所,博士后
2008年5月-现在,东北大学,教授
2011年1月-现在,北京大学高能物理中心,李政道青年学者
项目课题经历
国家自然科学基金项目:
国家自然科学基金-优秀青年基金项目,“暗能量与修改引力”,2016-2018;
国家自然科学基金-面上项目,“相互作用暗能量若干问题的研究”,2012-2015;
国家自然科学基金-面上项目,“暗能量和极早期宇宙的理论研究”,2010-2012;
国家自然科学基金-青年基金项目,“暴胀宇宙学与暗能量相关问题的研究”,2008-2010。
人才计划项目:
国家“万人计划”(高层次人才特殊支持计划)青年拔尖人才支持计划项目,2016-2018;
教育部新世纪优秀人ᠦ
论文、成果、著作等
学术论文
[114]Lu Feng, Yun-He Li, Fei Yu, Jing-Fei Zhang, Xin Zhang*. Exploring interacting holographic dark energy in a perturbed universe with parameterized post-Friedmann approach. e-Print: arXiv:1807.03022 [astro-ph.CO] | PDF
[113] Jia-Jia Geng, Rui-Yun Guo, Anzhong Wang, Jing-Fei Zhang, Xin Zhang*. Prospect for cosmological parameter estimation using future Hubble parameter measurements. e-Print: arXiv:1806.10735 [astro-ph.CO] | PDF
[112] Xuan-Neng Zhang, Ling-Feng Wang, Jing-Fei Zhang, Xin Zhang*. Improving cosmological parameter estimation with the future gravitational-wave standard siren observation from the Einstein Telescope. e-Print: arXiv:1804.08379 [astro-ph.CO] | PDF
[111] Rui-Yun Guo, Jing-Fei Zhang, Xin Zhang*. Exploring neutrino mass and mass hierarchy in the scenario of vacuum energy interacting with cold dark matter. e-Print: arXiv:1803.06910 [astro-ph.CO] | PDF
[110] Ling-Feng Wang, Xuan-Neng Zhang, Jing-Fei Zhang, Xin Zhang*. Impacts of gravitational-wave standard siren observation of the Einstein Telescope on weighing neutrinos in cosmology. Physics Letters B 782 (2018) 87-93. e-Print: arXiv:1802.04720 [astro-ph.CO] | PDF
[109] Rui-Yun Guo, Lei Zhang, Jing-Fei Zhang, Xin Zhang*. Constraints on brane inflation after Planck 2015: Impacts of the latest local measurement of the Hubble constant. e-Print: arXiv:1801.02187 [astro-ph.CO] | PDF
[108] Lu Feng, Jing-Fei Zhang, Xin Zhang*. Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter. e-Print: arXiv:1712.03148 [astro-ph.CO] | PDF
[107] Jue Zhang, Xin Zhang*. Gravitational clustering of cosmic relic neutrinos in the Milky Way. Nature Communications 9 (2018) 1833.
[106] Hai-Li Li, Jing-Fei Zhang, Lu Feng, Xin Zhang*. Reexploration of interacting holographic dark energy model: cases of interaction term excluding the Hubble parameter. European Physical Journal C 77 (2017) 907.
[105] Juan-Juan Guo, Jing-Fei Zhang, Yun-He Li, Dong-Ze He, Xin Zhang*. Probing the sign-changeable interaction between dark energy and dark matter with current observations. Science China-Physics, Mechanics & Astronomy 61 (2018) 030011.
[104] Ming-Ming Zhao, Jing-Fei Zhang, Xin Zhang*. Measuring growth index in a universe with massive neutrinos: A revisit of the general relativity test with the latest observations. Physics Letters B 779 (2018) 473-478.
[103] Shulei Ni, Hong Li, Taotao Qiu, Wei Zheng, Xin Zhang. Probing signatures of bounce inflation with current observations. (2017) submitted.
[102] Lu Feng, Jing-Fei Zhang, Xin Zhang*. Searching for sterile neutrinos in dynamical dark energy cosmologies. Science China-Physics, Mechanics & Astronomy 61 (2018) 050411.
[101] Rui-Yun Guo, Xin Zhang*. Constraints on inflation revisited: an analysis including the latest local measurement of the Hubble constant. European Physical Journal C 77 (2017) 882.
[100] Ming-Ming Zhao, Dong-Ze He, Jing-Fei Zhang, Xin Zhang*. Search for sterile neutrinos in holographic dark energy cosmology: Reconciling Planck observation with the local measurement of the Hubble constant. Physical Review D 96 (2017) 043520.
[99] Lu Feng, Jing-Fei Zhang, Xin Zhang*. A search for sterile neutrinos with the latest cosmological observations. European Physical Journal C 77 (2017) 418.
[98] Jing-Lei Cui, Hai-Li Li, Xin Zhang*. No evidence for the evolution of mass density power-law index γ from strong gravitational lensing observation. Science China Physics, Mechanics & Astronomy 60 (2017) 080411.
[97] Rui-Yun Guo, Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Weighing neutrinos in the scenario of vacuum energy interacting with cold dark matter: application of the parameterized post-Friedmann approach. Journal of Cosmology and Astroparticle Physics 1705 (2017) 040.
[96] Ming-Ming Zhao, Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Constraining neutrino mass and extra relativistic degrees of freedom in dynamical dark energy models using Planck 2015 data in combination with low-redshift cosmological probes: basic extensions to ΛCDM cosmology. Monthly Notices of the Royal Astronomical Society 469 (2017) 1713.
[95] Xin Zhang*. Weighing neutrinos in dynamical dark energy models. Science China Physics, Mechanics & Astronomy 60 (2017) 060431.
[94] Xin Zhang*. Impact of the latest measurement of Hubble constant on constraining inflation models. Science China Physics, Mechanics & Astronomy 60 (2017) 060421.
[93] Xin Zhang*. Probing the interaction between dark energy and dark matter with the parametrized post-Friedmann approach. Science China Physics, Mechanics & Astronomy 60 (2017) 050431.
[92] Dong-Ze He, Jing-Fei Zhang, Xin Zhang. Redshift drift constraints on holographic dark energy. Science China Physics, Mechanics & Astronomy 60 (2017) 039511.
[91] Sai Wang, Yi-Fan Wang, Dong-Mei Xia, Xin Zhang. Impacts of dark energy on weighing neutrinos: Mass hierarchies considered. Physical Review D 94 (2016) 083519.
[90] Yue-Yao Xu, Xin Zhang*. Comparison of dark energy models after Planck 2015. European Physical Journal C 76 (2016) 588.
[89] Lu Feng, Xin Zhang*. Revisit of the interacting holographic dark energy model after Planck 2015. Journal of Cosmology and Astroparticle Physics 1608 (2016) 072.
[88] Xin Zhang*. Impacts of dark energy on weighing neutrinos after Planck 2015. Physical Review D 93 (2016) 083011.
[87] Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Testing models of vacuum energy interacting with cold dark matter. Physical Review D 93 (2016) 023002.
[86] Rui-Yun Guo, Xin Zhang*. Constraining dark energy with Hubble parameter measurements: an analysis including future redshift-drift observations. European Physical Journal C 76 (2016) 163.
[85] Shuang Wang, Jia-Jia Geng, Yi-Liang Hu, Xin Zhang*. Revisit of constraints on holographic dark energy: SNLS3 dataset with the effects of time-varying β and different light-curve fitters. Science China Physics, Mechanics & Astronomy 58 (2015) 019801.
[84] Jia-Jia Geng, Rui-Yun Guo, Dong-Ze He, Jing-Fei Zhang, Xin Zhang*. Redshift drift constraints on f(T) gravity. Frontiers of Physics 10 (2015) 109501.
[83] Jing-Lei Cui, Yue-Yao Xu, Jing-Fei Zhang, Xin Zhang*. Strong gravitational lensing constraints on holographic dark energy. Science China Physics, Mechanics & Astronomy 58 (2015) 110402.
[82] Fei Yu, Jing-Lei Cui, Jing-Fei Zhang, Xin Zhang*. Statefinder hierarchy exploration of the extended Ricci dark energy. European Physical Journal C 75 (2015) 274.
[81]Jing-Lei Cui, Lu Yin, Ling-Feng Wang, Yun-He Li, Xin Zhang*. A closer look at interacting dark energy with statefinder hierarchy and growth rate of structure,Journal of Cosmology and Astroparticle Physics 09 (2015) 024.
[80] Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Probing f(R) cosmology with sterile neutrinos via measurements of scale-dependent growth rate of structure. Physics Letters B 744 (2015) 213-217.
[79] Jia-Jia Geng, Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Redshift drift exploration for interacting dark energy.European Physical Journal C 75 (2015) 356.
[78] Jing-Fei Zhang, Ming-Ming Zhao, Yun-He Li, Xin Zhang*. Neutrinos in the holographic dark energy model: constraints from latest measurements of expansion history and growth of structure. Journal of Cosmology and Astroparticle Physics 04 (2015) 038 .
[77] Jing-Fei Zhang, Yun-He Li, Xin Zhang*. Sterile neutrinos help reconcile the observational results of primordial gravitational waves from Planck and BICEP2. Physics Letters B 740 (2015) 359-363.
[76] Wei-Jiang Gong, Ying Zhao, Zhen Gao, Guangyu Yi, Xin Zhang. Odd-Even Effect of the Persistent Current in a Quantum Dot Ring with Embedded Majorana Bound States. Journal of the Physical Society of Japan 84 (2015) 024707.
[75] Jia-Jia Geng, Jing-Fei Zhang, Xin Zhang*. Parameter estimation with Sandage-Loeb test. Journal of Cosmology and Astroparticle Physics 12 (2014) 018.
[74] Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: Application of the parametrized post-Friedmann approach. Physical Review D 90 (2014) 123007.
[73] Jing-Fei Zhang, Ming-Ming Zhao, Jing-Lei Cui, Xin Zhang*. Revisiting the holographic dark energy in a non-flat universe: alternative model and cosmological parameter constraints. European Physical Journal C 74 (2014) 3178.
[72] Jing-Fei Zhang, Jia-Jia Geng, Xin Zhang*. Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints. Journal of Cosmology and Astroparticle Physics 10 (2014) 044.
[71] Shuang Wang, Yong-Zhen Wang, Jia-Jia Geng, Xin Zhang*. Effects of time-varying β in SNLS3 on constraining interacting dark energy models. European Physical Journal C 74 (2014) 3148.
[70] Jing-Fei Zhang, Jing-Lei Cui, Xin Zhang*. Diagnosing holographic dark energy models with statefinder hierarchy. European Physical Journal C 74 (2014) 3100.
[69] Jing-Fei Zhang, Yun-He Li, Xin Zhang*. Measuring growth index in a universe with sterile neutrinos. Physics Letters B 739 (2014) 102-105.
[68] Shuang Wang, Yong-Zhen Wang, Xin Zhang*. Effects of a time-varying color-luminosity parameter β on the cosmological constraints of modified gravity models. Communications in Theoretical Physics 62 (2014) 927-936.
[67] Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Tilt of primordial gravitational wave spectrum in a universe with sterile neutrinos. Science China Physics, Mechanics & Astronomy 57 (2014) 1455-1459.
[66] Jia-Jia Geng, Jing-Fei Zhang, Xin Zhang*. Quantifying the impact of future Sandage-Loeb test data on dark energy constraints. Journal of Cosmology and Astroparticle Physics 1407 (2014) 006.
[65] Yun-He Li, Jing-Fei Zhang, Xin Zhang*. Parametrized post-Friedmann framework for interacting dark energy. Physical Review D 90 (2014) 063005.
[64] Jing-Fei Zhang, Yun-He Li, Xin Zhang*. Cosmological constraints on neutrinos after BICEP2. European Physical Journal C 74 (2014) 2954.
[63] Yun-He Li, Xin Zhang*. Large-scale stable interacting dark energy model: Cosmological perturbations and observational constraints. Physical Review D 89 (2014) 083009.
[62] Shuang Wang, Yun-He Li, Xin Zhang*. Exploring the evolution of color-luminosity parameter β and its effects on parameter estimation. Physical Review D 89 (2014) 063524.
[61] Chao-Qiang Geng, Lu-Hsing Tsai, Xin Zhang. Dark radiation from a unified dark fluid model. Progress of Theoretical and Experimental Physics 2014 (2014) 6, 063E01.
[60] Jing-Fei Zhang, Li-Ang Zhao, Xin Zhang*. Revisiting the interacting model of new agegraphic dark energy. Science China Physics, Mechanics & Astronomy 57 (2014) 387-392.
[59] Miao Li, Xiao-Dong Li, Yin-Zhe Ma, Xin Zhang, Zhenhui Zhang. Planck constraints on holographic dark energy. Journal of Cosmology and Astroparticle Physics 1309 (2013) 021.
[58] Nan Li, Xin Zhang*. Reexamination of inflation in noncommutative space-time after Planck results. Physical Review D 88 (2013) 023508.
[57] Yin-Zhe Ma, Qing-Guo Huang, Xin Zhang. Confronting brane inflation with Planck and pre-Planck data. Physical Review D 87 (2013) 103516.
[56] Yun-He Li, Shuang Wang, Xiao-Dong Li, Xin Zhang*. Holographic dark energy in a universe with spatial curvature and massive neutrinos: a full Markov Chain Monte Carlo exploration. Journal of Cosmology and Astroparticle Physics 1302 (2013) 033.
[55] Jing-Fei Zhang, Yun-He Li, Xin Zhang*. A global fit study on the new agegraphic dark energy model. European Physical Journal C 73 (2013) 2280.
[54] Yun-He Li, Jing-Fei Zhang, Xin Zhang*. New initial condition of the new agegraphic dark energy model. Chinese Physics B 22(2013) 039501.
[53] Jing-Fei Zhang, Yang-Yang Li, Ying Liu, Sheng Zou, Xin Zhang*. Holographic Λ(t)CDM model in a non-flat universe. European Physical Journal C 72 (2012) 2077.
[52] Zhen-Hui Zhang, Song Li, Xiao-Dong Li, Xin Zhang, Miao Li. Revisit of the interaction between holographic dark energy and dark matter. Journal of Cosmology and Astroparticle Physics 1206 (2012) 009.
[51] Xiao-Dong Li, Shuang Wang, Qing-Guo Huang, Xin Zhang*, Miao Li. Dark energy and fate of the universe. Science China Physics, Mechanics & Astronomy 55 (2012) 1330-1334.
[50] Hong Li, Xin Zhang*. Constraining dynamical dark energy with a divergence-free parametrization in the presence of spatial curvature and massive neutrinos. Physics Letters B 713 (2012) 160-164.
[49] Tian-Fu Fu, Jing-Fei Zhang, Jin-Qian Chen, Xin Zhang*. Holographic Ricci dark energy: interacting model and cosmological constraints. European Physical Journal C 72 (2012) 1932.
[48] Hong Li, Xin Zhang*. Probing the dynamics of dark energy with divergence-free parametrizations: A global fit study. Physics Letters B 703 (2011) 119-123.
[47] Yun-He Li, Xin Zhang*. Running coupling: does the coupling between dark energy and dark matter change sign during the cosmological evolution? European Physical Journal C 71 (2011) 1700.
[46] Jing-Zhe Ma, Xin Zhang*. Probing the dynamics of dark energy with novel parametrizations. Physics Letters B 699 (2011) 233-238.
[45] Yun-He Li, Jing-Zhe Ma, Jing-Lei Cui, Zhuo Wang, Xin Zhang*. Interacting model of new agegraphic dark energy: observational constraints and age problem. Science China - Physics, Mechanics & Astronomy 54 (2011) 1367-1377.
[44] Miao Li, Xiao-Dong Li, Xin Zhang*. Comparison of dark energy models: A perspective from the latest observational data. Chinese Science Bulletin 55 (2010) 3741.
[43] Xin Zhang*. Heal the world: Avoiding the cosmic doomsday in the holographic dark energy model. Physics Letters B 683 (2010) 81-87.
[42] Jingfei Zhang, Li Zhang, Xin Zhang*. Sandage-Loeb test for the new agegraphic and Ricci dark energy models. Physics Letters B 691 (2010) 11-17.
[41] Jinglei Cui, Xin Zhang*. Cosmic age problem revisited in the holographic dark energy model. Physics Letters B 690 (2010) 233-238.
[40] Xiang-Lai Liu, Jingfei Zhang, Xin Zhang*. Theoretical limits on agegraphic quintessence from weak gravity conjecture. Physics Letters B 689 (2010) 139-144.
[39] Miao Li, Xiao-Dong Li, Xin Zhang*. Comparison of dark energy models: A perspective from the latest observational data. Science China - Physics, Mechanics & Astronomy 53 (2010) 1631-1645.
[38] Li Zhang, Jinglei Cui, Jingfei Zhang, Xin Zhang*. Interacting model of new agegraphic dark energy: Cosmological evolution and statefinder diagnostic. International Journal of Modern Physics D 19 (2010) 21-35.
[37] Jinglei Cui, Li Zhang, Jingfei Zhang, Xin Zhang*. New agegraphic dark energy as a rolling tachyon. Chinese Physics B 19 (2010) 019802.
[36] Miao Li, Xiao-Dong Li, Shuang Wang, Yi Wang, Xin Zhang*. Probing interaction and spatial curvature in the holographic dark energy model. Journal of Cosmology and Astroparticle Physics 0912 (2009) 014
[35] Wan-Lei Guo, Xin Zhang. Constraints on dark matter annihilation cross section in the brane-world and quintessence scenarios. Physical Review D 79 (2009) 115023.
[34] Miao Li, Xiao-Dong Li, Shuang Wang, Xin Zhang. Holographic dark energy models: a comparison from the latest observational data. Journal of Cosmology and Astroparticle Physics 0906 (2009) 036.
[33] Xin Zhang*. Holographic Ricci dark energy: Current observational constraints, quintom feature, and the reconstruction of scalar-field dark energy. Physical Review D 79 (2009) 103509.
[32] Yin-Zhe Ma, Xin Zhang*. Brane inflation revisited after WMAP five-year results. Journal of Cosmology and Astroparticle Physics 0903 (2009) 006.
[31] Xin Zhang*. Can the universe fragment into many independent causal patches at turnaround in cyclic cosmology? European Physical Journal C 59 (2009) 755-759.
[30] Xin Zhang*. Can black holes be torn up by phantom dark energy in cyclic cosmology? European Physical Journal C 60 (2009) 661-667.
[29] Xin Zhang, Jingfei Zhang, Jinglei Cui, Li Zhang. Chaplygin inflation in loop quantum cosmology. Modern Physics Letters A 24 (2009) 1763-1773.
[28] Chao-Jun Feng, Xin Zhang*. Holographic Ricci dark energy in Randall-Sundrumbraneworld: Avoidance of big rip and steady state future. Physics Letters B 680 (2009) 399-403.
[27] Xiang-Lai Liu, Xin Zhang*. New agegraphic dark energy in Brans-Dicke theory. Communications in Theoretical Physics 52 (2009) 761-768.
[26] Yin-Zhe Ma, Xin Zhang*. Possible theoretical limits on holographic quintessence from weak gravity conjecture. Physics Letters B 661 (2008) 239-245.
[25] Jingfei Zhang, Xin Zhang*, Hongya Liu. Statefinder diagnosis for the interacting model of holographic dark energy. Physics Letters B 659 (2008) 26-33.
[24] Jingfei Zhang, Xin Zhang*, Hongya Liu. Agegraphic dark energy as a quintessence. European Physical Journal C 54 (2008) 253-258.
[23] Jingfei Zhang, Xin Zhang*, Hongya Liu. Reconstructing generalized ghost condensate model with dynamical dark energy parametrizations and observational datasets. Modern Physics Letters A 23 (2008) 139-152.
[22] Jingfei Zhang, Xin Zhang*, Hongya Liu. Holographic dark energy in a cyclic universe. European Physical Journal C 52 (2007) 693-699.
[21] Jingfei Zhang, Xin Zhang, Hongya Liu. Holographic tachyon model. Physics Letters B 651 (2007) 84-88.
[20] Xin Zhang*, Yi Ling. Inflationary universe in loop quantum cosmology. Journal of Cosmology and Astroparticle Physics 0708 (2007) 012.
[19] Xin Zhang*, Feng-Quan Wu. Constraints on holographic dark energy from latest supernovae, galaxy clustering, and cosmic microwave background anisotropy observations. Physical Review D 76 (2007) 023502.
[18] Xin Zhang*. Reconstructing holographic quintessence. Physics Letters B 648 (2007) 1-7.
[17] M. R. Setare, Jingfei Zhang, Xin Zhang*. Statefinder diagnosis in a non-flat universe and the holographic model of dark energy. Journal of Cosmology and Astroparticle Physics 0703 (2007) 007.
[16] Xin Zhang*. Dynamical vacuum energy, holographic quintom, and the reconstruction of scalar-field dark energy. Physical Review D 74 (2006) 103505.
[15] Xin Zhang*. A note on noncommutative brane inflation. Journal of Cosmology and Astroparticle Physics 0612 (2006) 002.
[14] Xin Zhang*, Feng-Quan Wu. Noncommutative chaotic inflation and WMAP three year results. Physics Letters B 638 (2006) 396-400.
[13] Xin Zhang*, Feng-Quan Wu, Jingfei Zhang. New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter. Journal of Cosmology and Astroparticle Physics 0601 (2006) 003.
[12] Zhe Chang, Feng-Quan Wu, Xin Zhang*. Constraints on holographic dark energy from X-ray gas mass fraction of galaxy clusters. Physics Letters B 633 (2006) 14-18.
[11] Xin Zhang*, Feng-Quan Wu. Constraints on holographic dark energy from type Ia supernova observations. Physical Review D 72 (2005) 043524.
[10] Xin Zhang*. Statefinder diagnostic for coupled quintessence. Physics Letters B 611 (2005) 1-7.
[9] Xin Zhang*. Coupled quintessence in a power-law case and the cosmic coincidence problem. Modern Physics Letters A 20 (2005) 2575.
[8] Xin Zhang*. Statefinder diagnostic for holographic dark energy model. International Journal of Modern Physics D 14 (2005) 1597-1606.
[7] Xin Zhang*. An interacting two-fluid scenario for quintom dark energy. Communications in Theoretical Physics 44 (2005) 762-768.
[6] Xin Zhang*. Statefinder parameters for coupled quintessence scenario in a power law case. Communications in Theoretical Physics 44 (2005) 573-576.
[5] Xin Zhang*. Black hole evaporation based upon a q-deformation description. International Journal of Modern Physics A 20 (2005) 6039-6049.
[4] Xin Zhang*, Feng Pan. Transitional description of diatomic molecules in U(4) vibron model. Communications in Theoretical Physics 41 (2004) 29-36.
[3] Xin Zhang*, Feng Pan. Exact solutions of sl-boson system in U(2l+1)-O(2l+2) transitional region. Chinese Physics C 26 (2002) 1228-1237.
[2] Feng Pan, Xin Zhang, J. P. Draayer. Possible deviations from the O(4) limit of the vibron model in diatomic molecules. Physics Letters A 316 (2003) 84-90.
[1] Feng Pan, Xin Zhang, J. P. Draayer. Algebraic solutions of an sl-boson system in the U(2l+1)<-->O(2l+2) transitional region. Journal of Physics A 35 (2002) 7173-7185.
专利、著作版权等
声明:本站专家信息来源于各高校官网。