首页 > 专家库
孟军

领域:新一代信息技术产业 学校:大连理工大学职称:教授

大数据分析处理 机器学习与数据挖掘...

具体了解该专家信息,请致电:027-87555799 邮箱 haizhi@uipplus.com

教育背景

2008.9 2012.12 大连理工大学 计算机应用技术 博士 1986.9 1989.6 吉林工业大学 计算机及应用 硕士 1982.9 1986.7 吉林工业大学 计算机应用 学士

工作经历

1998.7 至今 大连理工大学 教师 1989.7 1998.6 吉林工业大学 教师

项目课题经历

主持和参与了国家自然科学基金、国家重大专项、教育部专项和省级自然基金等项目十余项,其中主持的辽宁省自然科学基金项目《相容粒计算分类知识发现及其应用研究》(2013-2015)已完成,主持的国家自然科学基金面上项目《基于植物胁迫响应基因表达数据和GO术语结合的特征选择及调控网络研究》已完成,《基于集成深度学习的植物lncRNA与miRNA互作关系预测研究》正在进行中。

论文、成果、著作等

代表性论文: 1. Kang Qiang, Meng Jun*, Cui Jun, Luan Yushi*, Chen Ming. PmliPred: a method based on hybrid model and fuzzy decision for plant miRNA-lncRNA interaction prediction. Bioinformatics, 2020. 2. Zhang Peng, Meng Jun*, Luan Yushi, Liu Chanjuan. Plant miRNA-lncRNA Interaction Prediction Prediction with the Ensemble of CNN and IndRNN. Interdisciplinary Sciences: Computational Life Sciences, 2020, 12: 82–89. 3. Wekesa Jael Sanyanda, Luan Yushi, Chen Ming, Meng Jun*. A Hybrid Prediction Method for Plant lncRNA-Protein Interaction. Cells, 2019, 8(6): 521. 4. Ismalia Bouba, Kang Qiang, Luan Yushi, Meng Jun*. Predicting miRNA-lncRNA interactions and recognizing their regulatory roles in stress response of plants. Mathematical Biosciences, 2019, 312(6): 67-76. 5. Meng Jun, Chang Zheng, Zhang Peng, Shi Wenhao, Luan Yushi*. lncRNA-LSTM: Prediction of Plant Long Non-coding RNAs Using Long Short-Term Memory Based on p-nts Encoding. International Conference on Intelligent Computing, 2019, 11645:347-357. 6. Zhou Haoran, Luan Yushi, Wekesa Jael Sanyanda, Meng Jun*. Prediction of Plant lncRNA-Protein Interactions Using Sequence Information Based on Deep Learning. International Conference on Intelligent Computing, 2019, 11645: 358-368. 7.Meng Jun, Shi Guanli, Luan Yushi. Plant miRNA function prediction based on functional similarity network and transductive multi-label classification algorithm, Neurocomputing, 2016, 179:283-289. 8.Meng Jun, Zhang Jing, Li Rui, Luan Yushi. Gene selection using rough set based on neighborhood for the analysis of plant stress response, Applied Soft Computing, 2014, 25(1): 51-63. 9.Meng Jun, Liu Dong, Luan Yushi. Inferring plant microRNA functional similarity using a weighted protein-protein interaction network, BMC Bioinformatics, 2015, 16:360. 10. Meng Jun, Zhang Jing, Luan Yushi. Gene Selection Integrated with Biological Knowledge for Plant Stress Response Using Neighborhood System and Rough Set Theory, IEEE-ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(2):433-444. 11.Meng Jun, Hao Han, Luan Yushi. Classifier ensemble selection based on affinity propagation clustering, Journal of Biomedical Informatics, 2016, 60:234-242. 12.Meng Jun, Zhang Jing, Luan Yush, He Xinyu, Li Lishuang, Zhu Yuanfeng. Parallel gene selection and dynamic ensemble pruning based on Affinity Propagation, Computers in Biology and Medicine, 2017, 87:8-21. 13. Meng Jun, Jiang Dingling, Zhang Jing, Luan Yushi. Ensemble classification for gene expression data based on parallel clustering, International Journal of Data Mining and Bioinformatics, 2018, 20(3):213-229. 14. Meng Jun, Wekesa Jaelsanyanda, Shi Guanli, Luan Yushi. Protein function prediction based on data fusion and functional interrelationship, Mathematical Biosciences, 2016, 274:25-32. 15.Meng Jun, Liu Dong, Sun Chao, Luan Yushi. Prediction of plant pre-microRNAs and their microRNAs in genome-scale sequences using structure-sequence features and support vector machine, BMC Bioinformatics, 2014, 15:423. 16.Meng Jun, Li Rui, Luan Yushi. Classification by integrating plant stress response gene expression data with biological knowledge, Mathematical Biosciences, 2015, 266:65-72. 17.Meng Jun, Zhang Xin, Luan Yushi. Global Propagation Method for Predicting Protein Function by Integrating Multiple Data Sources, Current Bioinformatics,2016,11(2) :186-194. 18.石文浩, 孟军*, 张朋, 刘婵娟. 融合CNN和Bi-LSTM的miRNA-lncRNA互作关系预测模型. 计算机研究与发展, 2019, 56(8):1652-1660. 19.孟军, 张晶, 姜丁菱, 何馨宇, 李丽双. 结合近邻传播聚类的选择性集成分类方法, 计算机研究与发展, 2018, 55(5) :986-993. 20.常征, 孟军, 施云生, 莫冯然. 多特征融合的lncRNA识别与其功能预测, 智能系统学报, 2018, 13(6):928-934.

专利、著作版权等

声明:本站专家信息来源于各高校官网。