教育背景
1993.10
1999.9
静冈大学
热科学
博士
1985.9
1988.7
中科院金属研究所
材料物理
硕士
1981.9
1985.7
吉林大学
物理
学士
工作经历
1981.9
1985.7
吉林大学物理系
学生
1979.9
1981.7
辽宁省锦州市锦州中学
学生
2017.3
至今
大连理工大学能动学院
教授
2004.3
2017.3
中科院工程热物理所
研究员
1993.10
2004.2
日本静冈大学工学部
助理教授
1993.10
1999.9
日本静冈大学工学部
博士生
1988.8
1993.9
中科院金属研究所
助研
1985.9
1988.7
中科院金属研究所
研究生
项目课题经历
主持了国家自然科学基金重点项目、重点国际合作项目、NSFC-JST重大国际合作项目、面上项目;科技部国家重大科学仪器设备开发专项项目、国家重大科学研究计划项目课题、973项目课题、863项目、国家重点研发计划子课题;XX探索重大项目、A计划项目、XX-809项目、XX-802项目、XX重大专项课题等。
论文、成果、著作等
代表论著:
B1.《微纳米材料和结构热物理特性表征》,材料科学技术著作丛书,科学出版社,2010.
B2. Experimental Study on Nanoscale Heat Transport by Femtosecond Laser, 《Femtosecond Lasers: New Research》-Chapter 8, Nova Science Publishers, 2013.
B3.微纳结构材料的热物理性能表征,《热能调控微纳结构材料》-第2章,纳米科学与技术丛书,科学出版社,2014.
B4. Heat Conduction and Heat Storage Characterizations of Phase-Change Microcapsules, 《Green Building and Phase Change Materials: Characteristics, Energy Implications and Environmental Impacts》-Chapter 4, Nova Science Publishers, 2015.
B5. Ionic Liquids Facilitate the Development of Absorption Refrigeration, 《Ionic Liquids - Current State of the Art》-Chapter 23, InTech, 2015.
R1. Advances in thermal transport properties at nanoscale in China, International Journal of Heat and Mass Transfer, 2018, 125, 413-433.
P1. Heat transfer characteristics of a concentric annular high temperature heat pipe under anti-gravity conditions, Applied Thermal Engineering, 2019, 148, 817-824.
P2. Anomalous pressure effect on the thermal conductivity of ZnO, GaN, and AlN from first-principles calculations, Physical Review B, 2018, 98(14), 144303.
P3. Hydrogen generation from chemical looping reforming of glycerol by Ce-doped nickel phyllosilicate nanotube oxygen carriers, Fuel, 2018, 222, 185-192.
P4. An intelligent oxygen carrier of La2-xSrxNiO4-lambda for hydrogen production by chemical looping reforming of ethanol, International Journal of Hydrogen Energy, 2017, 42(27), 17102-17111.
P5. Loop thermosiphon as a feasible cooling method for the stators of gas turbine, Applied Thermal Engineering, 2016, 109, 449-453.
P6. Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer, ACS nano, 2016, 10(8), 7792-7798.
P7. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film, Scientific Reports, 2016, 6, 21014.
P8. Tuning the interfacial thermal conductance between polystyrene and sapphire by controlling the interfacial adhesion, ACS Applied Materials and Interfaces, 2015, 7(42), 23644-23649.
P9. Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces, Advanced Materials, 2014, 26(35), 6093.
P10. Analysis of a high performance model Stirling engine with compact porous-sheets heat exchangers, Energy, 2014, 64, 31-43.
专利、著作版权等
获得授权国家专利80余项。
声明:本站专家信息来源于各高校官网。