首页 > 专家库
王晶

领域:新一代信息技术产业 学校:北京化工大学职称:教授

复杂工业过程建模、优化、控制及故障诊断;人工智能、机器学习、多元统计及其工业应用;生物基因制药过程分析、设计、优化与控制等...

具体了解该专家信息,请致电:027-87555799 邮箱 haizhi@uipplus.com

教育背景

1994、1998年东北大学获工学学士和工学博士学位

工作经历

项目课题经历

大数据下复杂流程工业的分布式过程监测与故障诊断 国家自然科学基金面上项目 统一框架下的间歇过程故障诊断与控制研究 国家自然科学基金面上项目 数据与模型融合驱动的间歇聚合过程学习控制 国家自然科学基金面上项目 快捷响应制造过程微观质量的建模、优化与控制 国家自然科学基金青年项目 基于分布一致性的多无人机系统自主协同控制 北京市自然科学基金面上项目 基于时段分割的间歇过程状态评估 北京市自然科学基金面上项目 基于IPv6的多无人机容错协同控制 教ᠦ୔

论文、成果、著作等

Wang Jing; Zhang Wenqian; Zhou Jinglin; Fault Detection with Data Imbalance Conditions Based on the Improved Bilayer Convolutional Neural Network, Industrial & Engineering Chemistry Research, 2020, doi: 10.1021/acs.iecr.9b06298 Zhihui Zhao, Jing Wang*, Yangquan Chen, Shuang Ju, Iterative learning based formation control for multiple quadrotor UAVs, International Journal of Advanced Robotic Systems, 2020, DOI: 10.1177/1729881420911520 Jianqi Wang, Yu Du, Jing Wang*, LSTM Based Long-Term Energy Consumption Prediction with Periodicity, Energy, 2020, DOI: 10.1016/j.energy.2020.117197 Jinglin Zhou, Shunli Zhang, Jing Wang, A Dual Robustness Projection to Latent Structure Method and Its Application, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020. 2970664 Chengyuan Tan, Sen Wang and Jing Wang*, Robust Iterative Learning Control for Iteration- and time-varying Disturbance Rejection, International Journal of Systems Science, 2020, DOI: 10.1080/00207721.2020.1716103 Jing Wang, Chenchen Yu, Yi Liu, Dong Shen, Yangquan Chen, Variable Gain Feedback PDα-type Iterative Learning Control for Fractional Nonlinear Systems with Time-delay, IEEE ACCESS, DOI : 10.1109/ACCESS.2019.2926760, 2019 Jing Wang, Changfeng Shao, Xiaolu Chen, Yang-Quan Chen, Fractional order DOB-sliding mode control for a class of noncommensurate fractional order systems with mismatched disturbances, Mathematical Methods in the Applied Sciences, 2019, DOI:10.1002/ mma.5850 Jing Wang, Junde Wang, and Meng Zhou*, On-line Auxiliary Input Signal Design for Active Fault Detection and Isolation Based on Set-membership and Moving Window Technique, International Journal of Control, Automation and Systems, 2019, doi: 10.1007/s12555-019-0182-6 Jing Wang, Chengyuan Tan, Haiyan Wu, Online shape modification of molecular weight distribution based on the principle of active disturbance rejection controller, IEEE ACCESS, vol. 7: 53163-53171, 2019, DOI 10.1109/ACCESS.2019.2912215 Ruixue Jia, Jing Wang*, Jinglin Zhou*, Fault diagnosis of industrial process based on the optimal parametric t-distributed stochastic neighbor embedding, SCIENCE CHINA Information Sciences, 2019, doi: 10.1007/s11432-018-9807-7. Jinglin Zhou, Yuwei Ren, and Jing Wang*, Quality-Relevant Fault Monitoring Based on Locally Linear Embedding Orthogonal Projection to Latent Structure, Industrial & Engineering Chemistry Research, 2019,58(3),pp 1262–1272, DOI: 10.1021/acs.iecr.8b03849 Jing Wang, Qilun Wang, Intelligent explicit model predictive control based on machine learning for microbial desalination cells,ProcIMechE Part I: J Systems and Control Engineering, 1–13 2018, Doi:10.1177/0959651818816845 Xiaolu Chen, Jing Wang*, Jinglin Zhou, Probability density estimation and Bayesian causal analysis based fault detection and root identification, Industrial & Engineering Chemistry Research, 2018, 57(43): 14656-14664 Jing Wang*, Changfeng Shao, Yang-Quan Chen, Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance, Mechatronics, 2018, 53: 8-19 Jing Wang*, Qilun Wang, Jinglin Zhou, Xiaohui Wang, Long Cheng, Operation space design of microbial fuel cells combined anaerobic-anoxic-oxic process based on support vector regression inverse model, Engineering Applications of Artificial intelligence, 2018,72, 340-349 Xiaolu Chen, Jing Wang*, Jinglin Zhou, Process Monitoring Based on Multivariate Causality Analysis and Probability Inference, IEEE ACCESS, 2018, 6: 6360-6369 Ruixuan Wang, Jing Wang*, Jinglin Zhou, Haiyan Wu, Fault diagnosis based on the integration of exponential discriminant analysis and Local Linear Embedding, The Canadian Journal of Chemical Engineering, 2018, 96: 463–483. DOI:10.1002/cjce.22921 Jing Wang, Bin Zhong, Jinglin Zhou*, Quality-Relevant Fault Monitoring Based on Locality Preserving Partial Least Squares Statistical Models,Industrial & Engineering Chemistry Research,2017, 56:7009–7020. DOI: 10.1021/acs.iecr.7b00248 Jing Wang*, Jingjing Zhang, Bo Qu, Haiyan Wu, Jinglin Zhou, Unified Architecture of Active Fault Detection and Partial Active Fault Tolerant Control for Incipient Faults, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(4), 1688-1700. DOI: 10.1109/TSMC. 2017.2667683 Jing Wang*, Daiwei Yang, Wei Jiang, Jinglin Zhou, Semi-supervised incremental support vector machine learning based on neighborhood kernel estimation, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017,47(10): 2677-2687, DOI: 10.1109/TSMC.2017. 2667703 Jing Wang*, Wenshuang Ge, Jinglin Zhou, Haiyan Wu, Qibing Jin, Fault isolation based on residual evaluation and contribution analysis and contribution analysis, Journal of the Franklin Institute, 2017, 354, 2591-2612

专利、著作版权等

声明:本站专家信息来源于各高校官网。