教育背景
2013.4–2017.4, 南京航空航天大学, 应用数学, 博士2003.9–2006.6, 江苏大学, 应用数学, 硕士1998.9 - 2002.6, 南京师范大学, 数学与应用数学专业, 本科生
工作经历
2018.1-至今,南京信息工程大学,数学与统计学院,副教授
项目课题经历
论文、成果、著作等
[1] Xuebing Zhang, Honglan Zhu. Dynamics and pattern formation in homogeneous diffusive predator–prey systems with predator interference or foraging facilitation, Nonlinear Analysis: Real World Applications, 2019, 48: 267-287.[2] Xuebing Zhang, Hongyong Zhao, Zhaosheng Feng, Spatio-temporal complexity of a delayed diffusive model for plant invasion, Computers & Mathematics with Applications, in press. DOI: 10.1016/j.camwa.2018.08.063[3] Xuebing Zhang, Honglan Zhu, Hopf bifurcation and chaos of a delayed finance system, Complexity, 2018, in press.[4] Xuebing Zhang, Hongyong Zhao, Dynamics and pattern formation of a diffusivepredator–prey model in the presence of toxicity, Nonlinear Dynamics, 2018, Doi:https://doi.org/10.1007/s11071-018-4683-2[5] Xuebing Zhang,Hongyong Zhao,Bifurcation and optimal harvesting of a diffusive predator–prey system with delays and interval biological parameters,Journal of Theoretical Biology,2014,363:390-403.[6] Xuebing Zhang,Honglan Zhu,Hongxing Yao,Analysis and adaptive synchronization for a new chaotic system,Journal of Dynamical and Control Systems,2012,18(4):467-477. [7] Xuebing Zhang,Honglan Zhu,Hongxing Yao,Analysis of a new three dimensional chaotic system,Nonlinear Dynamics,2012,67(1):335-343.[8] Zhang X, Zhao H. Stability and bifurcation of a reaction–diffusion predator–prey model with non-local delay and Michaelis–Menten-type prey harvesting. International Journal of Computer Mathematics, 2016, 93(9): 1447-1469. [9] Zhang X, Zhao H. Harvest control for a delayed stage-structured diffusive predator–prey model. International Journal of Biomathematics, 2017, 10(01): 1750004. [10] Xuebing Zhang, Hongyong Zhao. Dynamics analysis of a delayed diffusive predator–prey system with non-smooth continuous threshold harvesting. Computers & Mathematics with Applications, 2016, 72(5): 1402-1417. [11] Xuebing Zhang, Hongyong Zhao, Dynamics analysis of a delayed reaction-diffusion predator-prey system with non-continuous threshold harvesting, Mathematical Biosciences,2017, 289, :130-141. [12] Zhao H, Zhang X, Huang X. Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion. Applied Mathematics & Computation, 2015, 266(C):462-480. [13] Liu J, Zhang X. Hopf bifurcation of a delayed diffusive predator-prey model with strong Allee effect. Advances in Difference Equations, 2017, 2017(1): 200. [14] Zhu H, Zhang X. Dynamics and Patterns of a Diffusive Prey-Predator System with a Group Defense for Prey. Discrete Dynamics in Nature and Society. 2018;2018.[15] Song P, Zhao H, Zhang X. Dynamic analysis of a fractional order delayed predator–prey system with harvesting. Theory in biosciences, 2016, 135(1-2):59-72.[16] Zhao H, Yuan J, Zhang X. Stability and bifurcation analysis of reaction–diffusion neural networks with delays. Neurocomputing. 2015 Jan 5;147:280-90.[17] Zhao H, Huang X, Zhang X. Hopf bifurcation and harvesting control of a bioeconomic plankton model with delay and diffusion terms. Physica A Statistical Mechanics & Its Applications, 2015, 421(52):300-315.[18] Zhao H, Huang X, Zhang X. Turing instability and pattern formation of neural networks with reaction–diffusion terms. Nonlinear Dynamics, 2014, 76(1):115-124.[19] 张学兵 ,赵洪涌,不同复混沌系统的修正函数投影同步,重庆师范大学学报(自然科学版),2013,(02):65-68. [20] 张学兵 ,一个新混沌系统的分析与控制,重庆师范大学学报(自然科学版),2012,(02):55-59. [21] 张学兵 ,朱红兰,陈业勤,不同超混沌系统的最优同步,数学的实践与认识,2011,(24):125-131. [22] 张学兵 ,姚洪兴,一个复混沌系统的自适应同步,武汉理工大学学报,2011,(11):143-146。
专利、著作版权等
声明:本站专家信息来源于各高校官网。