首页 > 专家库
鲁世平

领域:新一代信息技术产业 学校:南京信息工程大学职称:教授

1. 时滞微分方程周期解与同宿解问题的研究;2. 生物种群模型动力学研究;3.空间粒子运动模型动力学研究....

具体了解该专家信息,请致电:027-87555799 邮箱 haizhi@uipplus.com

教育背景

1. 1982年7月毕业于铜陵师专数学系,分配到安徽繁昌芦南中学任教;2. 1996年7月毕业于安徽大学,获理学硕士学位,专业: 基础数学;3. 2004年3月毕业于北京理工大学,获理学博士学位,专业: 应用数学

工作经历

现为南京信息工程大学教授,博士生导师.

项目课题经历

[1] 泛函微分方程周期解、同宿解及相关问题的研究,国家自然科学基金(No.11271197),主持, 2013.01---2016.12.[2] 中立型泛函微分方程周期解问题的研究,南京信息工程大学人才基金(No.2012r101)主持 , 2013.01---2014.12.

论文、成果、著作等

[1]S.P.LuandL.J. Chen,The problem of existence of periodic solutions for neutralfunctional differential system with nonlinear difference operator,J.Math. Anal. Appl.387 (2012) 1127–1136.[2]XiangLv,Shiping Lu, Homoclinic solutions for ordinary p-Laplaciansystems,Applied Mathematics and Computation218 (2012) 5682–5692[3]S.P.Luetal, New properties of D-operator and its applications on the problem ofperiodic solutions to neutral functional differential system,NonlinearAnal.,74(2011)3011–3021.[4]王雯,鲁世平,厄尔尼诺-南方涛动时滞海气振子耦合模型,物理学报,60(2011)030205-1—030205-4.[5]S.P.Lu,Homoclinicsolutions for a nonlinear second order differential system with p-Laplacianoperator,Nonlinear Analysis: Real World Appl.12(2011)525–534.[6]S.P.Lu, Homoclinic solutions for a class of second-order p-Laplacian differentialsystems with delay,Nonlinear Anal.: Real World Appl.12(2011)780–788.[7]S.P.Lu,The problem of existence of homoclinic solutions to a Rayleigh equation withdelay,Proceedings of the 5th Interna ional Congress onMathematical Biology,Nanjing, P. R. China, June 3-5, 2011.[8]S.P.LuExistence ofhomoclinic solutions to a functionaldifferential equation,2010 InternationalConferenceon Applied Math. and Physics,Nanjing, P. R. China,May 7-9, 2010[9]ZhengxinWang,S.P. Luand Jinde Cao, Existence of periodic solutions forap-Laplacian neutral functional differential equation with multiplevariable parameters,Nonlinear Anal,72(2010)734-747.[10]X.Lv,S.P. Lu, P. Yan, Existence of homoclinic solutions for a class of secondorderHamiltonian systems,Nonlinear Anal.,72(2010)390-398.[11]X.Lv,S. P. Lu,P. Yan, Homoclinic solutions for nonautonomoussecond-order Hamiltonian s systems with a coercive potential,NonlinearAnal., 72(2010)3484-3490.[12]X.Lv,S.P. Lu, P. Yan, Existence and global attractivity of positiveperiodic solutions of Lotka-Volterra predator-prey systems with deviatingarguments,Nonlinear Anal., Real World Appl.,11(2010)574-583.[13]X. Lv,P. Yan,S.P. Lu, Existence and global attractivity of positive periodicsolutions of competitor-competitor-mutualist Lotka-Volterra systems withdeviating arguments,Mathematical and Computer Modelling,51(2010)823-832.[14] 陈丽娟,鲁世平,零维气候系统非线性模式的周期解问题,物理学报,20(2013)200201-03。[15] 陈丽娟,鲁世平,莫嘉琪,磁层-电离层耦合过程中等离子体粒子运动的周期轨,物理学报,9(2013)090201-04。[16]Lu, Shiping,Existence of periodic solutions for neutral functional differential equationswith nonlinear difference operator,ActaMathematica Sinica-English Series, 32(2016) 1541-1556[17] Lu, Shiping,Zhong, Tao, Two homoclinic solutions for a nonperiodic fourth-orderdifferential equation without coercive condition, Mathematical Methods in theAppliedSciences,40(2017) 3163-3172[18]Fanchao Kong,Shiping Lu, and Zhiguo Luo , Positive periodic solutions for singular higher orderdelay differential equations, Results inMathematics,72 (2017) 71–86[19]Shiping Lu andXuewen Jia,Homoclinic solutions for a second-order singular differentialequation, Journal ofFixedPoint Theory and Applications. (2018) 20:101[20] FanchaoKong,Shiping Lu,Zhiguo Luo,Solitary wave andperiodic wave solutions of generalized neutral-type neural networks withdelays, Neural Process Letters,48(2018)441–458[21] LuShiping;Guo Yuanzhi;Chen Lijuan, Periodic solutions forLienard equation with an indefinite singularity, Nonlinear Analysis, RealWorldApplications,45(2019) 542-556.[22] Yu, Xingchen,Shiping, A multiplicity result for periodic solutions of Lienard equations withan attractive singularity, AppliedMathematics and Computation,346( 2019)183-192.

专利、著作版权等

声明:本站专家信息来源于各高校官网。