教育背景
2005年7月获得山东大学信息与计算科学专业学士学位,同年被免试推荐为东华大学硕博连读研究生
2009年11月毕业于东华大学控制理论与控制工程专业,获工学博士学位
工作经历
2008年8月至2010年4月在香港理工大学作为Research Associate从事复杂系统建模方面的研究工作
2010年4月至今在南京信息工程大学任教
2012年3月至2012年8月在中国气象科学研究院做访问学者
项目课题经历
主持和参加的主要项目国家电网科技项目 基于数据和模型双驱动的电网支路参数辨识技术研究 58万国家自然科学基金项目,基于突触可塑性的情景记忆机理研究(61105115) 主持 江苏省自然科学基金,深度视觉信息处理的神经动力学机理研究(BK20161533)主持国家电网科技项目面向电网高可靠性实时性业务要求的异构通信网络融合技术研究 39万国家电网科技项目大规模多样化需求侧资源的动态需求响应控制基础理论 40万
论文、成果、著作等
[1]LiguoWeng, Xudong Sun, Min Xia (通讯作者),Yiqing Xu, Jia Liu, PortfolioOptimization of Digital Currency: A Deep Reinforcement Learning withMultidimensional Attention Gating Mechanism,Neurocomputing,doi:10.1016/j.neucom.2020.04.004[2] Min Xia (通讯作者), Namei Tian, Yonghong Zhang, Yiqing Xu, Xu Zhang, DilatedMulti-scale Deep Forest for Satelitte Cloud Image Detection, InternationalJournal of Remote Sensing, accepted.[3] Liguo Weng, Yiming Xu, MinXia (通讯作者), Yonghong Zhang, Jia Liu, Yiqing Xu, Water areassegmentation from remote sensing images using a separable residual Segnetnetwork, ISPRS International Journal of Geo-information, 9, 256, 2020.[4] Min Xia (通讯作者), Yang Li, Yonghong Zhang, Liguo Weng, Jia Liu, Cloud/snowrecognition of satellite cloud images based on multi-scale fusion attentionnetwork, Journal of Applied Remote Sensing, 14(3), 032609, 2020.[5]Min Xia (通讯作者),Xu Zhang,Wan’an Liu,Liguo Weng,Yiqing Xu,Multi-stage Feature Constraints Learning for Age Estimation, IEEE Transactionson Information Forensics and Security, 15(1):2417-2428, 2020.[6] Min Xia (通讯作者), Wenzhu Song, Xudong Sun, Jia Liu, Tao Ye,Yiqing Xu, Weighted Densely Connected Convolutional Networks for ReinforcementLearning,InternationalJournal of Pattern Recognition and Artificial Intelligence, 34(4):2052001,2020.[7]Min Xia (通讯作者), Jie Wang,Jia Liu, Liguo Weng, Yiqing Xu, Density-basedsemi-supervised online sequential extreme learning machine, Neural Computingand Applications, doi.org/10.1007/s00521-019-04066-3. online[8] Min Xia (通讯作者), Junhao Qian , Xiaodong Zhang , Jia Liu , Yiqing Xu, RiverSegmentation Based on Separable Attention Residual Network, Journal of AppliedRemote Sensing, 14(3), 032602, 2020.[9]Min Xia (通讯作者), Wan’an Liu, Yiqing Xu, Ke Wang, Xu Zhang, Dilated ResidualAttention Network for Load Disaggregation, Neural Computing and Applications,31(12):8931-8953,2019.[10]Min Xia (通讯作者),Chong Zhang, Yin Wang, Jia Liu,Chunzheng Li, Memory based decision making: a spiking neural circuit model,Neural Network World, 29(3): 135-149, 2019.[11]Wan’an Liu, Liguo Weng,Min Xia(通讯作者),Yiqing Xu,Ke Wang,Zhuhan Qiao,Multi-scale Residual Network for Energy Disaggregation,International Journal of Sensor Networks,2019, 30(3):172:183.[12]Min Xia (通讯作者), Wan’an Liu, Ke Wang, Xu Zhang, Yiqing Xu, Non-intrusiveload disaggregation based on deep dilated residual network,Electric PowerSystems Research, 2019, vol.170, 277–285.[13]Min Xia (通讯作者), Wan’an Liu, Bicheng Shi, Liguo Weng and Jia Liu, Cloud/snowrecognition for multispectral satellite imagery based on a multidimensionaldeep residual network, International Journal of Remote Sensing, 2019, vol.40,No.1, 156–170.[14]Min Xia (通讯作者), Chong Zhang, Liguo Weng, Jia Liu and Ying Wang, Robot pathplanning based on multi-objective optimization with local search, Journal ofIntelligent and Fuzzy Systems, 2018, vol.35, 1755–1764.[15]Min Xia (通讯作者), Shen Maoyang, Wang Jianfeng, et al. Anti-spurious-stateneural network using nonlinear outer product and dynamic synapses. Neuralnetwork World, 2016, 26(4):377-392.[16]Min Xia (通讯作者), Lu W, Yang J, et al. A hybrid method based on extremelearning machine and k -nearest neighbor for cloud classification ofground-based visible cloud image, Neurocomputing, 2015, 160(C):238-249.[17]Qian J,XiaM, Yue X. Parallel knowledge acquisition algorithms for big data usingMapReduce. International Journal of Machine Learning & Cybernetics, 2015,1(2):1-15.[18]夏旻(通讯作者),申茂阳,王舰锋,基于卷积神经网络的卫星云图云量计算,系统仿真学报,2018, 30(5):1623-1630.[19]Hu K, Song A,XiaM, et al. An Image Filter Based on Shearlet Transformation andParticle Swarm Optimization Algorithm. Mathematical Problems in Engineering,2015, (2015-10-11), 2015, 2015(4):1-9.[20]Weng L,MinXia, Wang W, et al. Crew exploration vehicle (CEV) attitude controlusing a neural–immunology/memory network. International Journal of SystemsScience, 2015, 46(1):152-158.[21]MinXia,(通讯作者),Weng L G, Wang Z J, etal. Sequence memory based on an oscillatory neural network. Science ChinaInformation Sciences, 2014, 57(7):72203-072203.[22]Weng L, LiuQ,Xia M, et al. Immune network-based swarm intelligenceand its application to unmanned aerial vehicle (UAV) swarm coordination.Neurocomputing, 2014, 125(125):134-141.[23]MinXia,Wong W K. A seasonal discrete grey forecastingmodel for fashion retailing. Knowledge-Based Systems, 2014, 57(2):119-126.[24]Min Xia(通讯作者), Liguo Weng, Zhijie Wang, Sequence Memory based on CoherentSpin-interaction Neural Networks, Neural Computation, 2014,26(12):2944-61.[25]Weng L,MinXia, Hu K, et al. Micro Aerial Vehicle (MAV) Flapping Motion ControlUsing an Immune Network with Different Immune Factors. International Journal ofAdvanced Robotic Systems, 2013, 10(13):1.[26]Wang W, MaH,Min Xia, et al. Attitude and Altitude ControllerDesign for Quad-Rotor Type MAVs. Mathematical Problems in Engineering, 2013,(2013-5-9), 2013, 2013(1-2):707-724.[27]Weng L,MinXia, Hu K, et al. A Memory/Immunology-Based Control Approach withApplications to Multiple Spacecraft Formation Flying. Mathematical Problems inEngineering, 2013, (2013-5-2), 2013, 2013(3):707-724.[28]Kai H, AiguoS,Min Xia,et al. An Adaptive Filtering AlgorithmBased on Genetic Algorithm-Backpropagation Network. Mathematical Problems inEngineering, 2013, (2013-4-16), 2013, 2013(4):289-307.[29] Min Xia(通讯作者),Zhang Y, Weng L, et al. Fashion retailing forecasting based on extreme learningmachine with adaptive metrics of inputs. Knowledge-Based Systems, 2012,36(6):253-259.[30]Weng L,MinXia, Liu Q, et al. An Immunology-inspired Fault Detection and IdentificationSystem. International Journal of Advanced Robotic Systems, 2012, 9(5):1.[31]夏曼,翁理国,张颖超.基于神经元协同激励的稳定时间可控情景记忆,系统仿真学报. 2011:2134-2137.[32]MinXia, Wang Z, Fang J. Temporalassociation based on dynamic depression synapses and chaotic neurons.Neurocomputing, 2011, 74(17):3242-3247.[33]MinXia, Tang Y, Pan F. Efficientmulti-sequence memory with controllable steady-state period and high sequencestorage capacity. Neural Computing & Applications, 2011, 20(1):17-24.[34]Wong WK,Min Xia,Chu W C. Adaptive neural networkmodel for time-series forecasting. European Journal of Operational Research,2010, 207(2):807-816.[35]Tang Y, FangJ A,Min Xia, et al. Synchronization of Takagi–Sugenofuzzy stochastic discrete-time complex networks with mixed time-varying delays.Applied Mathematical Modelling, 2010, 34(4):843-855.[36]MinXia, Fang J, Tang Y, et al.Dynamic depression control of chaotic neural networks for associative memory.Neurocomputing, 2010, 73(4-6):776-783.[37]MinXia, Fang J, Pan F, et al.Robust sequence memory in sparsely-connected networks with controllablesteady-state period. Neurocomputing, 2009, 72(13–15):3123-3130.
专利、著作版权等
声明:本站专家信息来源于各高校官网。