首页 > 专家库
赵维谦

领域:节能环保产业 学校:北京理工大学职称:教授

精密光电测试技术与装备、激光共焦/干涉成像与检测技术、纳米测控技术等...

具体了解该专家信息,请致电:027-87555799 邮箱 haizhi@uipplus.com

教育背景

1984.09-1988.07 哈尔滨科技大学 精密仪器,学士;

1993.09-1995.03 哈尔滨工业大学 精密仪器及机械,硕士;

1997.09-2003.07 哈尔滨工业大学 仪器科学与技术学科,博士

工作经历

1988.08-1995.03,哈尔滨汽轮机厂,助工、工程师;

1995.04-1997.06,哈尔滨工业大学,讲师;

1997.07-2002.07,哈尔滨工业大学,副教授、硕士生导师;

2002.08-2006.08,哈尔滨工业大学,教授;

2004.03-2006.12,哈尔滨工业大学,博士生导师;

2007.01至今,北京理工大学,教授,仪器科学与技术学科硕士生导师和博士生导师;

2008.07至今,北京理工大学,二级教授;

2012.09至今,教育部长江学者特聘教授;

2014.09至今,北京理工大学,教授,光学工程学科博士生导师等

项目课题经历

科研项目

主持和承担各类项目40余项,负责项目经费累计过亿元,自2007年以来主持的重要科研项目及基金类项目如下:

1)激光差动共焦扫描成像与检测仪器研发及其应用研究,国家重大科学仪器设备开发专项项目,负责人,2011-2016;

2)基于微纳系统集成及测试技术的典型产品及应用,国家863计划主题项目,负责人,2012-2014;

3)超分辨差动共焦显微镜的研制,国家自然基金科学仪器研究专款,负责人,2010-2012;

4)高散射体激光双轴差动共焦显微拉曼光谱原位成像方法与技术,国家自然科学基金项目,负责人,2015-2018;

5)靶丸内轮廓及壳层厚度分布测量技术研究,国家自然科学基金项目,负责人,2011-2013;

6)具有高空间分辨力的整形环形光差动共焦测量方法与技术,国家自然科学基金项目,负责人,2005-2007;

7)单模光纤及光束漂移量反馈控制式激光方向稳定方法研究,北京市自然基金,负责人,2008-2010;

8)高空间分辨共焦拉曼光谱测试方法与技术研究,教育部长江学者特聘教授资助计划项目,负责人, 2012-2016;

9)图像复原及光瞳滤波式超分辨共焦显微成像方法与技术, 教育部新世纪人才资助计划项目,负责人, 2006-2009;

10)纳米级微区激光差动共焦拉曼光谱探测方法研究,教育部博士点基金(博导类),负责人,2010-2012;

11)基于位相型光瞳滤波原理的三维超分辨差动共焦检测方法与技术,教育部博士点基金(博导类),负责人,2006-2008;

12)大型非球面轮廓测量仪器,民用航天任务,负责人,2014-2016;

13)高精度激光差动共焦曲率半径测量仪器研制,国家重大专项任务,负责人,2012-2014;

14)高精度长焦距透镜焦距检测技术验证,国家重大专项任务,负责人,2012. -2014;

15)激光差动共焦曲率半径测量技术研究,中国计量科学研究院项目,负责人,2010. -2012

论文、成果、著作等

研究成果曾获1项国家技术发明一等奖(排名2)、1项国家技术发明二等奖(排名1)、3项国防科学技术奖一等奖(排名2、2、3)、1项中国计量测试学会一等奖(排名1)和1项国防技术发明二等奖(排名1)等10余项科技成果奖励;在国内外重要学术刊物上发表学术论文150余篇,其中被SCI检索80余篇,在Optics Express和Optics Letters本领域国际著名期刊上发表论文20余篇 代表性论文

  在Optics Express、Optics Letters、Applied Optics 、Review of Scientific Instruments、Sensors and Actuators A-Physical 、Measurement Science and Technology和Optics Communications等国际期刊及国内刊物上发表学术论文100余篇, SCI和EI检索100余篇次,其中SCI IF>3的论文10篇,发表的主要SCI检索论文如下:

1)Zhao Weiqian(赵维谦)*,liu chao, Qiu Lirong. Laser divided-aperture differential confocal sensing technology with improved axial resolution. Optics Express. v 20, n 23, 2012. 11.5,p25979-25989(SCI、EI双检);

2)Zhao Weiqian(赵维谦)*,Sun Ruoduan, Qiu Lirong, Sha Dingguo. Laser differential confocal radius measurement. Optics Express. v18, n3, 2010.2.1, p2345-2360. (SCI、EI双检);

3)Zhao Weiqian(赵维谦)*,Sun Ruoduan, Qiu Lirong, Sha Dingguo. (Laser differential confocal) Lenses axial space ray tracing measurement. Optics Express. v18, n4, 2010.2.15,p3608-3617. (SCI、EI双检);

4)Zhao Weiqian(赵维谦)*,Sun Ruoduan, Qiu Lirong, Sha Dingguo. Laser differential confocal ultra-long focal length measurement. Optics Express. v17, n22, 2009.10.26,p20051-20062. (SCI、EI双检);

5)Zhao Weiqian(赵维谦)*, Qiu Lirong, Feng Zhengde. Effect of fabrication errors on superresolution property of a pupil filter. Optics Express, v 14, n 16, 2006.8, p7024-7036 (SCI、EI双检);

6)Zhao Weiqian(赵维谦)*, Tan Jiubin, Qiu Lirong. Bipolar absolute heterodyne confocal approach to higher spatial resolution. Optics Express. v 12, n 21. 2004.10.18, p5013 – 5021 (SCI、EI双检);

7)Zhao Weiqian(赵维谦)*, Tan Jiubin, Qiu Lirong. Tri-heterodyne confocal microscope with axial superresolution and higher SNR. Optics Express. v 12, n 21. 2004.10.18 , p5191-5197 (SCI、EI双检);

8)Qiu Lirong, Liu Dali, Zhao Weiqian(赵维谦)*, Han Cui, Sheng Zhong. Real-time laser differential confocal microscopywithout sample reflectivity effects. Optics Express. v 22, n 18, 2014.9.8, p21626-21640(SCI、EI双检);

9)Yang Jiamiao, Qiu Lirong*, Zhao Weiqian(赵维谦). Laser differential reflection-confocal focal-length measurement. Optics Express. v 20, n 23, 2012. 11.5,p26027-26036(SCI、EI双检);

10)YangJiamiao, Qiu Lirong*, Zhao Weiqian(赵维谦), Shen Yang. Laser differential confocal paraboloidal vertex radius measurement. Optics Letters, v 39, n 4, 2014.2.15, p830-833(SCI、EI双检);

11)Zhao Weiqian(赵维谦), Wang Yun, Qiu Lirong. Laser differential confocal lens refractive index measurement. Applied Optics. v 50, n 24, , 2011.8.20, p 4769-4778, (SCI、EI双检);

12)Hou Maosheng, Qiu Lirong*, Zhao Weiqian(赵维谦), Wang Fan. Single-step spatial rotation error separation technique for the ultraprecision measurement of surface profiles. Applied Optics, v 53, n 3, 2014.1.20, p487-495(SCI、EI双检);

13)Yang Jiamiao, Qiu Lirong*, Zhao Weiqian(赵维谦), Shao Rongjun, Li Zhigang. Measuring the lens focal length by laser reflection-confocal technology. Applied Optics. v52, n 16, 2013.6.1, p 3812-3817 (SCI、EI双检);

14)Liu Dali, Wang Yun*, Qiu Lirong, Mao Xinyue, Zhao Weiqian(赵维谦). Confocal pore size measurement based on super-resolution image restoration. Applied Optics, v 53, n25, 2014.9.1, p5694-5700 (SCI源);

15)Sun Ruoduan, Qiu Lirong*, Yang Jiamiao, Zhao Weiqian(赵维谦). Laser differential confocal radius measurement system. Applied Optics. v51, n26, 2012.9.10, p 6275-6281 (SCI、EI双检);

16)Zhao Weiqian(赵维谦)*,Tan Jiubin, Qiu Lirong, Limin Zou. Enhancing laser beam directional stability by single-mode optical fiber and feedback control of drifts. Review of Scientific Instruments. v76, n3, 2005.3, p 036101 (SCI、EI双检);

17)Zhao Weiqian(赵维谦)*,Xue Zi, Tan Jiubin. SSEST: A new approach to higher accuracy cylindricity measuring instrument. International Journal of Machine Tools and Manufacture. v 46, n14, 2006.11, p1869-1878.(SCI、EI双检);

18)Zhao Weiqian(赵维谦)*, Tan Jiubin, Qiu Lirong, Zou Limin. A new laser heterodyne confocal probe for ultraprecision measurement of discontinuous contours. Measurement Science and Technology, v 16, n 2, 2005.2, p 497-504 (SCI、EI双检);

19)Zhao Weiqian(赵维谦)*, Tan Jiubin, Xue Zi, Fu Saoliang. SEST: A new error separation technique for ultra-high precision roundness measurement. Measurement Science and Technology. v16, n3, p833-841, 2005.3(SCI、EI双检);

20)Wang Yun, Qiu Lirong, Song Yanxing, Zhao Weiqian(赵维谦)*. Laser differential confocal lens thickness measurement. Measurement Science and Technology, v 23, n 5, 2012.5 (055204-1~8) (SCI、EI双检);

21)Zhao Weiqian(赵维谦)*, Tan Jiubin, Qiu Lirong,Jin Peng. SABCMS, A new approach to higher lateral resolution of laser probe measurement. Sensors and Actuators A-Physical. v 120, n 1, 2005.4.29, p17-25 (SCI、EI双检);

22)Zhao Weiqian(赵维谦), Guo Junjie, Qiu Lirong*, Wang Yun. Low transmittance ICF capsule geometric parameters measurement using laser differential confocal technique. Optics Communications. v.292,n7, 2013.4.1, p 62-67.(SCI、EI双检);

23)Zhao Weiqian(赵维谦)*, Jiang Qin, Qiu Lirong, Liu Dali. Dual-axes differential confocal microscopy with high axial resolution and long working distance. Optics Communications. v.284,n1, 2011.1.1, p15-19. (SCI、EI双检);

24)Zhao Weiqian(赵维谦)*, Qiu Lirong, Chen Shanshan. Image restoration phase-filtering lateral superresolution confocal microscopy. Chinese Physics Letters. v 23, n 4, 2006.4, p856~859 (SCI、EI双检);

25)Zhao Weiqian(赵维谦)*,Feng zhengde,Qiu Lirong.A shaped annular beam tri-heterodyne confocal microscope with good anti-environmental interference capability.Chinese Physics.v16.n 6, 2007.6, p1624-1631 (SCI、EI双检);

26)Qiu Lirong, Zhao Weiqian(赵维谦)*. Confocal multiple-transmitted-light interference microscope with increased lateral resolution. Optical Engineering. v 52, n 10,2013.10.23, 100504(SCI、EI双检);

27)Qiu Lirong, Zhao Weiqian(赵维谦)*, Feng Zhengde. Approach to higher spatial resolutions in a laser probe measurement system using a phase-only pupil filter. Optical Engineering. v 45, n 11, 2006.11, p113601-113608(SCI、EI双检);

28)Zhao Weiqian(赵维谦)*, Tan Jiubin, Qiu Lirong. Improvement of confocal microscope performance by shaped annular beam and heterodyne confocal techniques. Optik. v 116, n 3, 2005.4, p111-117 (SCI、EI双检) ;

29)Qiu Lirong, Zhao Weiqian(赵维谦)*, Xuemei Ding, Dingguo Sha. Effect of fabrication errors on lateral super-resolution property of a three-zone pupil filter. Optik. v 120, n 4, 2009.2, p 151-157 (SCI、EI双检);

30)Qiu Lirong, Zhao Weiqian(赵维谦)*, Feng Zhengde, Ding Xuemei. A lateral superresolution differential confocal technology with phase-only pupil filter. Optik. v 118, n 2, 2007.2, pp67-73(SCI、EI双检);

31)Qiu Lirong, Zhao Weiqian(赵维谦)*, Ding Xuemei. Effect of fabrication errors on axial super-resolution property of a three-zone pupil filter. Optik. v 117, n 12, 2006.12, p563-568 (SCI、EI双检);

32)Wang Yun, Qiu Lirong*,Yang Jiamiao, Zhao Weiqian(赵维谦). Measurement of the refractive index and thickness for lens by confocal technique. Optik. v 124, n 17, 2013.9, p 2825–2828(SCI、EI双检)

专利、著作版权等

申请中国发明专利、美国发明专利和欧洲发明专利70余项,其中以第一发明人身份授权的40余项专利如下:

1)一种高空间分辨共焦拉曼光谱探测方法与装置,专利号:ZL 201310027359.3;

2)差动共焦系统球差测量方法,专利号:ZL 201210140889.4;

3)反射式差动共焦透镜中心厚度测量方法,专利号:ZL 201210190779.9;

4)共焦系统球差测量方法,专利号:ZL 201210140645.6;

5)一种基于空气静压轴承技术的大范围调倾调心工作台,专利号:ZL 201210065215.2;

6)反射式共焦透镜中心厚度测量方法,专利号:ZL 201210191601.6;

7)共焦干涉定焦及曲率半径测量方法,专利号:ZL 201110038297.7;

8)差动共焦干涉元件多参数测量方法与装置,专利号:ZL 201010621159.7;

9)可兼顾分辨力和量程的激光差动共焦theta扫描检测方法,专利号:ZL 201010541404.3;

10)分割焦斑探测的超分辨双轴差动共焦测量方法与装置, 专利号:ZL 201010121866.X;

11)基于位置探测器的共分划面多光谱标靶,专利号:ZL 201010000554.3;

12)超分辨激光偏振差动共焦成像方法与装置,专利号:ZL 201010173338.9;

13)具有高空间分辨力的乘积共焦扫描检测方法,专利号:ZL 201010213511.3;

14)多焦全息差动共焦超大曲率半径测量方法与装置,专利号:ZL 201010173084.0;

15)双轴共焦高空间分辨乘积处理方法,专利号:ZL 201010239830.1;

16)共分划面全光谱标靶,专利号:ZL 200910237438.0;

17)多焦全息差动共焦超长焦距测量方法与装置,专利号:ZL 201010173346.3;

18)差动共焦透镜中心厚度测量方法与装置,专利号:ZL 201010000555.8;

19)差动共焦内调焦法镜组光轴及间隙测量方法与装置,专利号:ZL 201010121835.4;

20)差动共焦镜组轴向间隙测量方法与装置,专利号:ZL 201010000553.9;

21)基于谐振梁扫描的差动共焦瞄准触发式显微测量方法与装置,专利号:ZL 200910086926.6;

22)差动共焦瞄准触发式空心球体内外轮廓及壁厚测量方法与装置,专利号:ZL 200910081280.2;

23)差动共焦与点衍射干涉相结合测量球体形貌及壁厚的方法与装置,专利号:ZL 200910237439.5;

24)相机摆镜摆角扫描特性测试装置,专利号:ZL 200910086928.5;

25)差动共焦-低相干干涉组合折射率及厚度测量方法与装置,专利号:ZL 200910079330.3;

26)激光差动共焦图谱显微层析成像装置,专利号:ZL 200910082248.6;

27)抗径向跳动的非合作目标激光转角及速率测量方法与装置,专利号:ZL 200910079325.2;

28)超分辨双轴差动共焦测量方法与装置,专利号:ZL 200910000781.3;

29)一种汽轮机叶轮静平衡的测量方法与装置,专利号:ZL 200910086927.0;

30)抗径向跳动的合作目标激光转角及速率测量方法与装置,专利号:ZL 200910079329.0;

31)差动共焦拉曼光谱测试方法,专利号:ZL 200810115601.1;

32)光瞳滤波合成孔径光学超分辨成像方法,专利号:ZL 200810115600.7;

33)五棱镜组合超长焦距测量方法与装置,专利号:ZL 200910079327.1;

34)差动共焦组合超长焦距测量方法与装置,专利号:ZL 200810226966.1;

35)共焦组合超长焦距测量方法与装置,专利号:ZL 200810226967.6;

36)三差动共焦显微成像方法, 专利号:ZL 200410073652.4;

37)具有数十纳米横向分辨力的反射多光束共焦干涉显微镜,专利号:ZL 2005 1 0123581.9;

38)三差动共焦显微三维超分辨成像方法,专利号:ZL 200410090774.4;

39)整形环形光三差动共焦显微镜,专利号:ZL 200410074459.2;

40)单转位圆度误差分离方法,专利号:ZL 200510002287.2;

41)具有高空间分辨力的整形环形光束式差动共焦传感器,专利号:ZL 200410001107.4;

42)光束漂移量快速反馈控制式高精度激光准直方法及装置,专利号:ZL 200410033610.8;

43)具有高空间分辨力的差动共焦扫描检测方法, 专利号:ZL 200410006359.6
声明:本站专家信息来源于各高校官网。