首页 > 专家库
钟思佳

领域:新一代信息技术产业 学校:东南大学职称:副教授

...

具体了解该专家信息,请致电:027-87555799 邮箱 haizhi@uipplus.com

教育背景

工作经历

项目课题经历

1. 国家自然科学基金天元基金,非线性Schrodinger方程,2010/01-2010/12,主持

2. 

1. S. Zhong, The stochastic derivative nonlinear Schrödinger equation. to apper in Differential integral equations

2. S. Zhong, Cauchy problem of Schrödinger-improved Boussinesq systems on the torus. J. Math. Anal. Appl., 415 (2014), no. 1, 217–239.

3. C. Li, S. Zhong, L. Wang, W. Su, C. Fang, Waiting time distribution of solar energetic particle events modeled with a non-stationary poisson process, Astrophysical Journal Letters, 792(2014), no. 2,Article Number: L26.

4. S. Zhong, The Cauchy problem of null form wave equation on with random initial data. Funkcial. Ekvac.,55(2012), no. 3, 367-403.

5.S. Zhong, Global existence of solutions to Schrödinger equations on compact Riemannian manifolds below H 1 , Bulletin de la SMF, 138 (2010), no. 4, 583-613.

6.D. Fang, H. Pecher, S. Zhong, Low regularity global well-posedness for the two-dimensional Zakharov system, ANALYSIS, 29(2009), 265-282.

7.S. Zhong, D. Fang, L2 -concentration phenomenon for Zakharov system below energy norm II, Comm. On Pure and Appl. Anal., Vol. 8, No. 3(2009), 1117-1132.

8. D. Fang, S. Zhong, L2 -concentration phenomenon for Zakharov system below energy norm, Commun. Contemp. Math., 11, no. 1(2009), 27-57.

9.S. Zhong,The growth in time of higher sobolev norms of solutions to Schrödinger equations on compact Riemannian manifolds, J. Differential equations, 245(2008), 359-376.

10. D. Fang, C. Tong, S. Zhong, Global existence for nonlinear Klein-Gordon equations in infinite homogeneous waveguides in two dimensions, J. Math. Anal. Appl., 331 (1)(2007), 21-37.

11. D. Fang, S. Zhong, Cauchy problem for the L2 -critical nonlinear Schrödinger equation below the energy norm, Chinese Journal of Contemporary Mathematics, Vol.28, No. 4(2007), 621-630.

12. D. Fang, S. Zhong, Global solutions for nonlinear Klein-Gordon equations ininfinite homogeneous waveguides, J. Differential equations, 231(1)(2006), 212-234.

13. D. Fang, S. Zhong, Cauchy problem for the L2 -critical nonlinear Schrödinger equation below H 1 ,Nonlinear Analysis, Vol. 62, No.1(2005), 117-130.


专利、著作版权等

声明:本站专家信息来源于各高校官网。