领域:新一代信息技术产业 学校:东南大学职称:副教授
...
具体了解该专家信息,请致电:027-87555799 邮箱 haizhi@uipplus.com
主持项目:
2018.1-2020.12, 基于分层矩阵存储的分数阶扩散方程的自适应算法设计和应用,
国家自然科学基金,青年项目(No. 11701081)
2016.7-2019.6,分数阶扩散方程的谱方法超收敛分析和应用,
江苏省自然科学基金,青年项目(No. BK20160660)
2016.1-2017.12 ,空间分数阶偏微分方程的高效算法研究,
东南大学高校基本科研业务费高水平论文项目, (No. 2242016K41029)
2016.2-2016.11,分数阶扩散方程的自适应有限元方法研究及其应用,
东南大学高校基本科研业务费(已结题)
2011.06-2013.06,分数阶偏微分方程的高精度算法研究,
江苏省普通高校研究生科研创新计划项目,(No. CXLX11_0093)(已结题)
参与项目:
2017.01-2020.12, 基于忆阻的分数阶时滞神经网络的多稳定性分析与控制, 国家自然科学基金(面上项目)(No.61673111),排名第二,在研
2015-2020, Fractional PDEs for Conservation Laws and Beyond: Theory, Numerics and Applications, OSD/ARO/MURI, (W911NF-15-1-0562) 在研
2013.01-2016.12, 空间分数阶偏微分方程高精度快速算法的研究,
国家自然科学基金项目, (No. 11271068)(已结题)
荣誉:
6. 2017年东南大学青年教师授课竞赛 三等奖
5. 2017年东南大学首开课,优秀奖 (全校2名)
4. 2016年分数阶微分和应用国际会议,Riemann-Liouville Award
3. 2015 年东南大学优秀博士学位论文
2. 2015 年Applied Mathematical Modelling 杂志优秀审稿人
1. 2014 年Journal of Computational Physics 杂志优秀审稿人
谷歌引用: https://scholar.google.com/citations?user=ZNuh1dAAAAAJ&hl=en
[16] Hong Sun, Xuan Zhao,Zhi-zhong Sun, The temproal second order difference schemes based on
the interpolation approximation for the time multi-term fractional wave equation, submitted
[15] Beichuan Deng, Zhimin Zhang, Xuan Zhao, Superconvergence points for the spectral interpolation of Riesz fractional derivatives, arXiv. 170910223
[14] Yue Zhao, Weiping Bu, Xuan Zhao, Yifa Tang, Galerkin finite element method for two-dimensional space and time fractional Bloch–Torrey equation,Journal of Computational Physics,(2017), http://dx.doi.org/10.1016/j.jcp.2017.08.051
[13]Xiaoshuai Ding, Jinde Cao, Xuan Zhao,Fuad E. Alsaadi,Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes,PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 473 (2017)
[12]Xiaoshuai Ding, Jinde Cao, Xuan Zhao,Fuad E. Alsaadi,Finite-time Stabilityof Fractional-Order Complex-Valued Neural Networks with Time Delays Neural Processing Letters 2017.01.01 DOI: 10.1007/s11063-0
[11] Xuan Zhao, Xiaozhe Hu, Wei Cai, George E. Karniadakis, Adaptive Finite element method for fractional differential equations using Hierarchical matrices, Comput. Methods Appl. Mech. Engrg. 325 (2017) 56–76.
[10] Xuan Zhao, Zhimin Zhang, Superconvergence points of fractional spectral interpolation, SIAM Journal on Scientific Computing, 38 (2016) A598-A614.
[9] Xuan Zhao, Zhi-zhong Sun, George Em Karniadakis, Second order approximations for variable order fractional derivatives: Algorithms and applications, Journal of Computational Physics, Special Issue on Fractional PDEs, 293 (2015) 184–200.
[8] Xuan Zhao, Zhi-zhong Sun, Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium, Journal of Scientific Computing, 62 (2014) 747-771.
[7] Xuan Zhao, Zhi-zhong Sun, Zhao-peng Hao, A fourth-order compact ADI scheme for 2D nonlinear space fractional Schrödinger equation, SIAM Journal on Scientific Computing, 36-6 (2014), pp. A2865-A2886.
[6] Haiyan Cao, Zhi-zhong Sun, Xuan Zhao, A second-order three-level difference scheme for a Magneto-Thermo-Elasticity Model, Adv. Appl. Math. Mech., 6 (2014), 281-298.
[5] Jin-cheng Ren, Zhi-zhong Sun, Xuan Zhao, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, Journal of Computational Physics, 232 (2013), 456-467.
[4] Xuan Zhao, Qinwu Xu, Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient, Applied Mathematical Modelling, 38 (2014) 3848-3859.
[3] Juan Li, Zhi-zhong Sun, Zhao Xuan, A three level linearized compact difference scheme for the Cahn-Hilliard equation, Sci China Math, 55 (2012), 805-826.
[2] Ya-nan Zhang, Zhi-zhong Sun, Xuan Zhao, Compact alternating direction implicit schemes for the two-dimensional fractional diffusion-wave equation, SIAM Journal on Numerical Analysis, 50 ( 2012) , 1535-1555.
[1] Xuan Zhao, Zhi-zhong Sun, A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, Journal of Computational Physics, 230 (2011), 6061-6074.