领域:新一代信息技术产业 学校:东南大学职称:教授
...
具体了解该专家信息,请致电:027-87555799 邮箱 haizhi@uipplus.com
科研项目:
1. 带斜导数边界条件的偏微分方程定解问题的边界反演,国家自然科学基金(面上项目,No.11671082),2017.01-2020.12,主持;
2. 介质不连续性的反演方法及其数值实现,国家自然科学基金(青年项目,No.11301075),2014.01-2016.12, 主持;
3. 基于微分方程模型的介质成像和图像处理的数值方法,国家自然科学基金(重大研究计划培育项目,No.91330109),2014.01-2016.12, 参与;
4. 基于Helmholtz方程组的波场逆散射及数值解,江苏省自然科学基金(青年项目,BK20130594),2013.07-2016.06,主持。
奖励和荣誉:
1. 2018年,获得江苏省工业与应用数学学会第二届“工业与应用数学奖青年奖”;
2. 2017年,获得教育部高等学校科学研究优秀成果(自然科学)二等奖,第二完成人;
3. 2016年,入选江苏高校“青蓝工程”中青年学术带头人培养对象;
4. 2015年,获得东南大学第22届青年教师授课竞赛三等奖;
5. 2014年,获得江苏省优秀博士学位论文;
6. 2014年,获得东南大学2013-2014学年首开课培训优秀奖。
研究生培养:
1. 许勤凯,18级硕士,学号:181451,在读;
2. 李 毅,17级硕士,学号:171442,在读,2018年在Journal of Computational Physics上发表一篇论文(第二作者),获2018年度国家奖学金;
3. 姚青云,16级硕士转18级博士,学号:189136,在读;
4. 王艳艳,15级硕士,学号:151337,2018年3月毕业,现工作单位:南阳市第五中学。
31.Jun Guo, Gen Nakamura,Haibing Wang*, The factorization method for recovering cavities in a heat conductor, submitted, 2020.
30. Lixin Feng, Haibing Wang*, Lei Zhang, The forward and inverse problems for the scattering of obliquely incident electromagnetic waves in a chiral medium. submitted, 2019.
29. Yu Jiang, Gen Nakamura, Haibing Wang*, Locating small inclusions in diffuse optical tomography by a direct imaging method. submitted, 2019.
28. Mourad Sini, Haibing Wang*, Estimation of the heat conducted by a cluster of small cavities and characterization of the equivalent heat conduction. SIAM Multiscale Modeling and Simulation,17(2019), No. 4, 1214–1251.
27. Gen Nakamura, Haibing Wang*, Solvability of interior transmission problem for the diffusion equation by constructing its Green function. Journal of Inverse and Ill-posed Problems, 27 (2019), No. 5, 671–701.
26. Haibing Wang*, Yi Li, Numerical solution of an inverse boundary value problem for the heat equation with unknown inclusions. Journal of Computational Physics, 369 (2018), 1–15.
25.Gen Nakamura, Haibing Wang*, Numerical reconstruction of unknown Robin inclusions inside a heat conductor by a non-iterative method. Inverse Problems, 33(2017), No. 5, 055002.
24. Haibing Wang, Jijun Liu, An inverse scattering problem with generalized oblique derivative boundary condition. Applied Numerical Mathematics, 108 (2016), 226–241.
23.Haibing Wang, Jijun Liu, The two-dimensional direct and inverse scattering problems with generalized oblique derivative boundary condition. SIAM J. Appl. Math., 75 (2015), No. 2, 313–334.
22.Gen Nakamura, Haibing Wang*, Reconstruction of an impedance cylinder at oblique incidence from the far-field data. SIAM J. Appl. Math., 75 (2015), No. 1, 252–274.
21.Gen Nakamura, Haibing Wang*, Reconstruction of an unknown cavity with Robin boundary condition inside a heat conductor. Inverse Problems, 31 (2015), No. 12, 125001.
20.Zenwen Wang, Haibing Wang, Shufang Qiu, A new method for numerical differentiation based on direct and inverse problems of partial differential equations. Appl. Math. Letters, 43 (2015), 61–67.
19.Junichi Nakagawa, Gen Nakamura, Satoshi Sasayama, Haibing Wang, Local maxima of solutions to some nonsymmetric reaction-diffusion systems. Math. Meth. Appl. Sci., 37 (2014), No. 5, 752–767.
18.Haibing Wang*, Bin Wu, On the Well-Posedness of Determination of Two Coefficients in a Fractional Integrodifferential Equation. Chinese Ann. Math., 35B (2014), No. 3, 447–468.
17.Gen Nakamura, Haibing Wang, Linear sampling method for the heat equation with inclusions. Inverse Problems, 29 (2013), No. 10, 104015. (This paper is selected as one of the highlights fromIP in 2013)
16.Gen Nakamura, Haibing Wang, The direct electromagnetic scattering problem from an imperfectly conducting cylinder at oblique incidence. J. Math. Anal. Appl., 397 (2013), 142–155.
15. Haibing Wang,Jijun Liu, On decomposition method for acoustic wave scattering by multiple obstacles. Acta Mathematica Scientia (Ser. B), 33 (2013), No. 1, 1–22.
14.Haibing Wang, Jijun Liu, A decomposition scheme for acoustic obstacle scattering in a multilayered medium. Applicable Analysis, 92 (2013), No. 4, 831–854.
13.Gen Nakamura, Haibing Wang, Inverse scattering for obliquely incident polarized electromagnetic waves. Inverse Problems, 28 (2012), No. 10, 105004.
12. Horst Heck, Gen Nakamura, Haibing Wang, Linear sampling method for identifying cavities in a heat conductor. Inverse Problems, 28 (2012), No. 7, 075014.
11.Gen Nakamura, Brian D. Sleeman, Haibing Wang, On uniqueness of an inverse problem in electromagnetic obstacle scattering for an impedance cylinder. Inverse Problems, 28 (2012), No. 5, 055012. (This paper is selected as a featured article by IP)
10. Haibing Wang, Jijun Liu, On the reconstruction of surface impedance from the far-field data in inverse scattering problems. Applicable Analysis, 91 (2012), No. 4, 787–806.
9.Haibing Wang, Gen Nakamura, The integral equation method for electromagnetic scattering problem at oblique incidence. Applied Numerical Mathematics, 62 (2012), No. 7, 860–873.
8.Haibing Wang, Jijun Liu, Recovering the Dirichlet-to-Neumann map in inverse scattering problems using integral equation methods. Advances in Computational Mathematics, 36 (2012), No. 2, 279–297.
7.Jishan Fan, Gen Nakamura, Haibing Wang*, Blow-up criteria of smooth solutions to the 3D Boussinesq system with zero viscosity in a bounded domain. Nonlinear Analysis: TMA, 75 (2012), No. 7, 3436–3442.
6.Haibing Wang, Jijun Liu, Splitting method for acoustic scattering by a two-layered obstacle (in Chinese). J. Southeast University (Natural Science Edition), 41 (2011), No. 3, 652–658.
5.Haibing Wang, Jijun Liu, On the reconstruction of Dirichlet-to-Neumann map in inverse scattering problems with stability estimates. Science China Mathematics, 53 (2010), No. 8, 2069–2084.
4. Jijun Liu, Haibing Wang, Some Reconstruction Methods for Inverse Scattering Problems. Optimization and Regularization for Computational Inverse Problems and Applications, Edited by Y.F. Wang etc., Springer-Verlag, Berlin and Higher Education Press, Beijing, 2010.
3.Haibing Wang, Jijun Liu, Numerical solution for the Helmholtz equation with mixed boundary condition. Numerical Mathematics: A Journal of Chinese Universities, 16 (2007), No. 3, 203–214.
2.Haibing Wang, Jijun Liu, Numerical realization of probe method for multiple obstacles (in Chinese). Mathematica Numerica Sinica, 29 (2007), No.2, 189–202.
1.Haibing Wang, Jijun Liu, Asymptotic Behavior of Eigenvalues of a Sturm-Liouville Problem with Robin Boundary (in Chinese). Mathematica Applicata, 18 (2005), No. 4, 654–661.